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Abstract

In the present study, an existing two-dimensional boundary-fitted model [J. Hydraul. Eng.-ASCE 122 (9) (1996) 512]

is used to study the effect of grid non-orthogonality on the solution of shallow water equations using boundary-fitted

grids. The linearized two-dimensional shallow water equations are expressed in terms of the grid angle and aspect ratio.

The truncation errors of the finite difference approximations used in the solution of the governing equations are shown

to be dependent on the grid angle and the aspect ratio. The coefficient of the truncation error was shown to increase,

with the decrease in the grid angle. The RMS errors in model predicted surface elevations and velocities for the case of

seiching in a rectangular basin are found to increase gradually, as the grid resolution decreases from 174 to 80 grid-

points per wavelength or as the grid angle decreases from 90� to 50� and increases rather sharply for a grid angle of 30�
at grid resolutions less than 80 gridpoints per wavelength. The model predicted surface elevations for the case of tidal

forcing in a rectangular basin are found to be insensitive to the grid angle at grid resolutions higher than 600 gridpoints

per wavelength. The RMS error in the model predicted velocities is found to increase gradually as the grid angle de-

creases from 90� to 30� or as the grid resolution decreases from 1400 gridpoints per wavelength to 400 gridpoints per

wavelength and increases sharply as the grid resolution decreases from 400 to 150 gridpoints per wavelength. Two-

dimensional depth averaged hydrodynamic modeling of tidal circulation in Narragansett Bay, using three different

boundary-fitted grids showed that the model predicted surface elevations are insensitive to the grid angle at grid res-

olutions as low as 200 gridpoints per wavelength. However, the model predicted velocities were found to increase as the

grid resolution decreases from 600 to 200 gridpoints per wavelength. We conclude from this study that grid angle and

grid resolution affects the accuracy of the model predicted currents and the numerical dispersion increases with the

decrease in grid angle or grid resolution and these are in agreement with that reached by Sankaranarayanan and

Spaulding [Dispersion and Stability Analyses of Shallow Water Equations in Boundary-fitted Coordinates, Department

of Ocean Engineering, University of Rhode Island, 2001, p. 33] through a Fourier analysis of the discretized equations

in boundary-fitted coordinates.

� 2002 Elsevier Science B.V. All rights reserved.

Journal of Computational Physics 184 (2003) 299–320

www.elsevier.com/locate/jcp

*Corresponding author.

E-mail addresses: sankar@appsci.com, subbayya@appsci.com (S. Sankaranarayanan), spaulding@oce.uri.edu (M.L. Spaulding).
1 Formerly at Ocean Engineering, University of Rhode Island, USA.

0021-9991/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0021-9991 (02 )00042-6

mail to: sankar@appsci.com,


Keywords: Non-orthogonality; Boundary-fitted grids; Truncation error

1. Introduction

Accurate prediction of tidal elevations and currents is essential for modeling the salinity distribution and

dispersion of pollutants in bays. Since the geometry and bathymetry of water bodies are quite complex,
traditional finite difference methods, using rectangular grids, require very fine grids to resolve the shoreline

and small coves, resulting in a substantial increase in computational effort. To address some of the limi-

tations of the traditional finite difference methods, conformal grids [3] and orthogonal curvilinear grids [4]

were used to model water bodies with less complicated geometries. However, it is relatively difficult to

generate conformal and orthogonal curvilinear grids for water bodies having narrow coves and tidal inlets.

The topography and bathymetry of the study area can be represented better with the minimum number of

gridpoints using a non-orthogonal grid. Numerical hydrodynamic models using generalized non-orthog-

onal, boundary-fitted grids [5–7] were used to overcome the limitations of models using orthogonal and
conformal grids. The generation of the boundary-fitted grids is usually based on the solution of homo-

geneous or non-homogeneous elliptic partial differential equations, which can be solved by standard finite

difference methods [8]. The governing flow equations need to be transformed to the curvilinear coordinates,

so that they can be solved on a boundary-fitted grid. In [6,7,9], they transformed only the independent

variables (coordinate geometry) in the governing equations. Due to difficulties in satisfying lateral

boundary conditions, Muin and Spaulding [1] and Borthwick and Akponasa [10] transformed both the

dependent (components of velocities) and the independent variables. Muin and Spaulding [1] extended

Sheng�s [5] approach to spherical coordinates. The equations of motion in spherical coordinates, expressed
in terms of contravariant velocities, were solved on a non-orthogonal boundary-fitted grid [1].

The choice of a given boundary-fitted grid configuration can have a substantial impact on the numerical

solution of the governing equations [8,11]. When the transformed governing equations are solved using

finite difference methods, the truncation error of the finite difference expressions used depends on: (i) the

higher-order derivatives of the solution variables, (ii) the rate of change of grid spacing, and (iii) the non-

orthogonality of the grid. Thompson et al. [8], Kerlick and Klopfer [12], and Mastin [11] showed using

truncation error analysis, that the error due to grid non-orthogonality is small, if the grid angle is not less

than 45�. Nielson and Skovgaard [13] went on to verify Thompson et al. [8] result by solving the linearized
shallow water equations in (i) the region between two concentric cylinders and (ii) a non-rotating parabolic

Nomenclature

f water elevation

/; h spherical coordinate system

q density of water

g gravitation

n; g generalized curvilinear coordinate system
D elevation +water depth ðD ¼ hþ fÞ
h water depth

L wavelength

l length of channel

R radius of earth

T wave period

U ; V vertically averaged velocities in /- and h-directions, respectively
U c; V c vertically averaged velocities in n- and g-directions, respectively
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container, where the surface is not necessarily a plane. It is noted that Nielsen and Skovgaard [13] did not

transform the dependent variables (velocities) in their solution methodology.

Lee and Tsuei [14] computed the truncation errors of convective terms of the Navier–Stokes equation in

a curvilinear coordinate system. They concluded that the optimal grid arrangement strongly depended on

the flow field and hence suggested the use of grid adaptation based on the flow field, to minimize the

truncation error.

Sankaranarayanan and Spaulding [2], through a Fourier analysis of the discretized equations in

boundary-fitted coordinates, showed that the dispersivity increases with a decrease in grid angle or grid
resolution.

In the present study, the model developed by Muin and Spaulding [1] is used to evaluate the effect of grid

angle on the numerical solution of shallow water equations in a generalized, non-orthogonal, boundary-

fitted coordinate system. A truncation error analysis of the finite difference approximations is performed

and expressed in terms of grid quality parameters, specifically the grid aspect ratio and the grid angle. Grid

configurations with different grid angles and aspect ratios are generated and used to test the effect of grid

angle on the model predicted surface elevations and velocities to select problems. Systematic studies on the

effects of grid skewness in the model predicted velocities were clearly absent in the earlier studies [13].

2. Governing equations

Using a spherical coordinate system, where / is the longitude, h is the latitude, R is the radius of the

earth, the two-dimensional vertically averaged continuity equation is given by [1]

of
ot

þ 1

R cos h
oUD
o/

þ 1

R
oV D
oh

� VD
R
tan h ¼ 0; ð1Þ

where U and V are the vertically averaged velocities in the /- and h-directions, respectively, R is the mean
radius of the earth, f is the water surface elevation, D is the total depth (f þ h), and h is the water depth.
Coriolis effects have been neglected and hence our analysis will be applicable to small- and mesoscale

problems where Rossby number R0 ¼ V =ð2XLsÞ � 1, where V and Ls are the velocity and length scales of
the motion, respectively, and X denotes the angular velocity of the earth; cf. [24, Chapter 1.2]. The non-

linear advection terms are neglected, to make a simple and meaningful analysis of the effects of grid
skewness on the solution.

Neglecting the advective, viscous, andCoriolis terms, themomentumequation in the/-direction is given by

oUD
ot

¼ � gD
R cos h

of
o/

� �
� sb/

q
: ð2Þ

Similarly, the momentum equation in the h-direction is given by

oV D
ot

¼ � gD
R

of
oh

� �
� sbh

q
; ð3Þ

where sb/ ¼ qCbU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ V 2

p
, sbh ¼ qCbV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ V 2

p
, Cb is the bed friction coefficient, q is the density of

water, and g is the acceleration due to gravity.

2.1. Governing equations in the curvilinear coordinate system

The linearized, transformed equations of motion, in terms of the contravariant velocities (U c and V c ) in

the curvilinear coordinate system n, g, are given by
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Continuity equation:

of
ot

þ 1

R cos h
1

J
ðJU c cos hDÞn
h

þ ðJV c cos hDÞg
i
¼ 0; ð4Þ

Momentum equation in /-direction:

oðDU cÞ
ot

¼ �
gD hghg þ /g/g cos

2 h
� �

J 2R cos2 h
fn þ

gD hnhg þ /n/g cos
2 h

� �
J 2R cos2 h

fg �
scb/
q

; ð5Þ

Momentum equation in h-direction:

oðDV cÞ
ot

¼
gDð/g/n cos

2 h þ hnhgÞ
J 2R cos2 h

fn �
gD /n/n cos

2 h þ hnhn

� �
J 2R cos2 h

fg �
scbh
q

ð6Þ

and the subscripted variables (/n;/g; hn and hg) refer to derivatives with respect to the subscripts indicated.
J is the Jacobian given by, J ¼ /nhg � /ghn. The relationship between the contravariant vertically averaged

velocities (U c; V c) and velocities in spherical coordinates (U ; V ) is given by

U ¼ cos h/nU
c þ cos h/gV

c;

V ¼ hnU c þ hgV c:
ð7Þ

The bottom stress terms in the contravariant form, scb/ and scbh, can be written as

scb/ ¼ qCbU c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU cÞ2 þ ðV cÞ2

q
; scbh ¼ qCbV c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU cÞ2 þ ðV cÞ2

q
:

2.2. Governing equations in terms of grid quality parameters

The position vector on the surface of the sphere (/; h;R ¼ constant) is given by

r̂r ¼ R cos h/êe/ þ Rhêeh; ð8Þ

where êe/ and êeh are the curvilinear vectors in the /- and h-directions, respectively.
The derivatives of the position vectors in the (n; g)-directions are given by

ĝg1 ¼
or̂r

on̂n
¼ R cos h/nêen þ Rhnêeg; ð9Þ

ĝg2 ¼
or̂r
oĝg

¼ R cos h/gêen þ Rhgêeg; ð10Þ

where êen and êeg are the unit vectors in n; g-directions, respectively, and the subscripts in the equations
indicate partial derivatives (e.g. /n ¼ o/=on). Normalizing with respect to R, since R is constant on the

surface of a sphere, the covariant components of the metric tensor gij ¼ ĝgi � ĝgj are given by

gðijÞ ¼
/n/n cos

2 h þ hnhn /n/g cos
2 h þ hnhg

/n/g cos
2 h þ hnhg /g/g cos

2 h þ hghg

	 

: ð11Þ

The angle of grid non-orthogonality (c) or angle of the grid (Fig. 1), as it is called from now on, can be

defined as
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cos c ¼ gð12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð11Þgð22Þ

p : ð12Þ

The Aspect Ratio ðAÞ, which measures the degree of distortion of the grid, can be defined as

A ¼
ffiffiffiffiffiffiffiffiffi
gð22Þ
gð11Þ

r
; ð13Þ

where gðijÞ is the metric tensor and is given by Eq. (11).
Eq. (12) can also be written as

sin c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð11Þgð22Þ � g2ð12Þ

gð11Þgð22Þ

s
¼ J cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð11Þgð22Þ
p ð14Þ

since gð11Þgð22Þ � g2ð12Þ ¼ J 2 cos2 h.
Eq. (14) can also be written, using Eq. (13), as

sin c ¼ J cos h
Agð11Þ

¼ JA cos h
gð22Þ

: ð15Þ

Following Kerlick and Klopfer [12], the elements of the metric tensor can thus be written in terms of c
and A as

gð11Þ ¼
J cos h
A sin c

; gð22Þ ¼
JA cos h
sin c

; gð12Þ ¼ cos c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð11Þgð22Þ

p
: ð16Þ

The momentum equations can now be written in terms of the grid quality parameters, the interior grid

angle ðcÞ and the Aspect Ratio ðAÞ, as

n-momentum equation:

oðDU cÞ
ot

¼ � gD

R sin2 cgð11Þ
fn þ

gDA cos c

R sin2 cgð22Þ
fg; ð17Þ

g-momentum equation:

oðDV cÞ
ot

¼ gD cos c

AR sin2 cgð11Þ
fn �

gD

R sin2 cgð22Þ
fg: ð18Þ

Eqs. (17) and (18) reduce to that for a orthogonal coordinate system for c ¼ 90�. Additional substitu-
tions, gð11Þ ¼ gð22Þ ¼ R ¼ A ¼ 1, reduces Eqs. (17) and (18) to that for a Cartesian coordinate system. It can

be seen from Eqs. (17) and (18) that the coefficients of the four barotropic terms increase with decrease in

grid angle.

Fig. 1. Definition sketch.
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3. Truncation error analysis

The transformed equations can be approximated by finite difference expressions. The spatial discreti-

zation is based on a space staggered C-grid system [16]. This analysis assumes that the spatial discretization

is uniform, throughout the domain. Time derivative terms are discretized using a second-order accurate,

three-level scheme [1]. The finite difference expression for a typical time derivative term is given by

of
ot

¼
1:5ðf Þnþ1i;j � 2:0ðf Þni;j þ 0:5ðf Þn�1i;j

Dt
� Dt2

3

o3f
ot3

� �
: ð19Þ

The central difference expression for first-order spatial derivatives is given by

of
on

¼
fiþ1

2
;j � fi�1

2
;j


 �
Dn

� ðDnÞ2

24
fnnn: ð20Þ

Similarly the finite difference expression for second-order spatial derivatives is given by

o2f

on2
¼

fiþ1;j � 2fi;j þ fi�1;j
� �

Dnð Þ2
� ðDnÞ2

12
fnnnn: ð21Þ

The second-order differences for the cross-derivative terms can be expressed as

of
onog

¼ fiþ1;jþ1 � fi�1;jþ1 � fiþ1;j�1 þ fi�1;j�1
4DnDg

� 1

6
ðDnÞ2fnggg



þ ðDgÞ2fnnng

�
: ð22Þ

Discretizing the time derivative in the n-momentum equation, Eq. (17) gives

ðDU cÞnþ1i;j ¼ 1

1:5
2ðDU cÞni;j

n
� 0:5ðDUcÞn�1i;j

o
þ Dt2

4:5

o3ðDU cÞ
ot3

� �
� 1

1:5

gD

R sin2 cgð11Þ
f

" #
n

þ 1

1:5

gDA cos c

R sin2 cgð22Þ
f

" #
g

: ð23Þ

The total truncation error in the n-momentum equation, after approximating the first derivative terms in
Eq. (23), using Eq. (20), is given by

TE1 ¼ Dt2

4:5

o3ðDU cÞ
ot3

� �
þ 1

1:5

ðDnÞ2

24

DtgD

R sin2 cg11
f

	 
nþ1
nnn

( )
þ 1

1:5

(
� ðDgÞ2

24

DtgDA cos c

R sin2 cg22
f

	 
nþ1
ggg

)
: ð24Þ

Discretizing the time derivative in the g-momentum equation, Eq. (18) gives

ðDV cÞnþ1i;j ¼ 1

1:5
2ðDV cÞni;j

n
� 0:5ðDV cÞn�1i;j

o
þ Dt2

4:5

o3ðDU cÞ
ot3

� �
� 1

1:5

DtgD cos c

RA sin2 cgð11Þ
f

" #ðnþ1Þ

n

þ 1

1:5

DtgD

R sin2 cgð22Þ
f

" #ðnþ1Þ

g

: ð25Þ

The total truncation error in the g-momentum equation, after approximating the first derivative terms in

Eq. (25), using Eq. (20), is given by
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TE2 ¼ Dt2

4:5

o3ðDU cÞ
ot3

� �
þ 1

1:5

ðDnÞ2

24

DtgD cos c

RA sin2 cgð11Þ
f

" #nþ1

nnn

8<
:

9=
;

þ 1

1:5

8<
:� ðDgÞ2

24

DtgD

R sin2 cgð22Þ
f

" #nþ1

ggg

9=
;: ð26Þ

Discretizing the time derivative in the continuity equation, Eq. (4) becomes

1:5ðfÞnþ1i;j � 2ðfÞni;j þ 0:5ðfÞn�1i;j þ Dt2

3

o3ðDU cÞ
ot3

� �
þ 1

R cos h
1

J
ðJU c cos hDÞn
h

þ ðJV c cos hDÞg
i
¼ 0:

ð27Þ

Through algebraic manipulation, the momentum equations are next substituted into the continuity

equation to obtain a Helmholtz equation in terms of the surface elevation [7,15]

ð1:5fÞnþ1i;j þ ðDtÞ2

1:5

8<
:� gD

Rgð11Þ sin
2 c

f

" #
nn

þ AgD cos c

R sin2 cgð22Þ
f

" #
ng

9=
;

þ ðDtÞ2

1:5

8<
:� gD cos c

ARgð11Þ sin
2 c

f

" #
ng

þ gD

Rgð22Þ sin
2 c

f

" #
gg

9=
;

¼ 2:0ðfÞni;j � 0:5ðfÞn�1i;j � Dt
1:5R

2DU c½ 
nn
n

� 0:5U cD½ 
n�1n þ 2DV c½ 
ng � 0:5V cD½ 
n�1g

o
: ð28Þ

The truncation error, due to the terms on the left-hand side of Eq. (28), is given by

TE3 ¼ ðDtÞ2ðDnÞ2

18

gD

Rgð11Þ sin
2 c

f

" #nþ1

nnnn

8<
: � 2AgD cos c

Rgð22Þ sin
2 c

f

" #nþ1

nggg

9=
;

þ ðDtÞ2ðDnÞ2

18

gD

Rgð22Þ sin
2 c

f

" #nþ1

gggg

8<
: � 2AgD cos c

Rgð11Þ sin
2 c

f

" #nþ1

gnnn

9=
;

þ ðDtÞ2

9
ðDnÞ2 gD cos c

Rgð11Þ sin
2 c

f

" #nþ1

nggg

8<
: þ ðDgÞ2 gD cos c

Rgð11Þ sin
2 c

f

" #nþ1

gnnn

9=
;: ð29Þ

It is seen from Eqs. (24), (26), and (29) that the orthogonal truncation error terms are proportional to

1= sin2 c. The non-orthogonal truncation error in the n- and g-momentum equations are, respectively,
proportional to A cos c=sin2 c and cos c=sin2 c, where A is the aspect ratio and c is the grid angle. Thus it can
be seen that the coefficients of the truncation error increases with decrease in the grid angle or increase in

the aspect ratio. The third-order and fourth-order derivative terms appearing in Eqs. (24), (26), and (29) are

cumbersome to evaluate numerically.

It is noted that the truncation error in Eq. (29) requires evaluation of fourth-order derivative terms to

achieve second-order accuracy in n and g. Each fourth-order derivative term, when expressed in a gener-
alized boundary-fitted coordinate system, evaluated using a symbolic program was found to contain more

than 100 terms. Appendix A gives the expressions for evaluating the third-order derivative terms, to give an
idea of the complexity of the problem.
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4. Test cases for studying the effect of grid non-orthogonality

Two test cases, (i) the oscillation of a standing wave in a closed rectangular basin and (ii) tidally forced

flow in a channel open at one end, are used to study the effect of non-orthogonality on model predictions.

Keeping the number of grid cells the same, the boundary points in the longitudinal direction, away from the

left and right boundaries, are moved to generate grids with varying skewness, keeping the spacing of the grid

control points uniform, to the extent possible. The length and width of the basin are, respectively, 23,000

and 2244m. Since the finite difference approximations for the spatial, second derivative, and cross-deriv-
ative terms in Helmholtz equation require a 3� 3 stencil, five nodes were chosen in the direction of latitude.

Fig. 2 shows grids with uniform skewnesses for a grid spacing of 561m. Grids with uniform skewnesses of

90�, 60�, 50�, and 30� and grid spacings of 2090.9, 1095.2, 561, and 277.1m were used. The results obtained

using these grids are compared with the corresponding analytical solution. In this study the skewness angle

for a given grid has been maintained for most of the domain, except near the boundaries. The non-uni-

formity of the grid occurring near the boundaries could not be avoided for the grids used in this study.

4.1. Standing wave in a closed rectangular basin

The analytical solutions for surface elevation and velocity for a standing wave in a closed rectangular

basin are given by:

fðx; tÞ ¼ a cos kx cos rt; ð30Þ

uðx; tÞ ¼ aC
h
sin kx sin rt; ð31Þ

where a is the maximum amplitude, k ¼ 2p=L, r ¼ 2p=T , and C ¼
ffiffiffiffiffi
gh

p
, L is the wavelength, T is the period,

and h is the depth of water. The length of the basin l is taken to be 23,000m and the depth h is 10m. The
wavelength and the fundamental seiching period ðT Þ for the problem are 46,000m and 4647 s, respectively.

(a)

(b)

(c)

(d)

Fig. 2. Grid with a angle of: (a) c ¼ 90�, dx ¼ dy ¼ 561m; (b) c ¼ 61�, dx ¼ dy ¼ 561m; (c) c ¼ 50�, dx ¼ dy ¼ 561m; (d) c ¼ 30�,
dx ¼ dy ¼ 561m.
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The initial water surface profile was one-half of a cosine wave with a maximum at the left end and a

minimum at the right end. The amplitude a of the initial cosine wave is set at 0.1 m, with a amplitude to
basin depth ratio of 0.01, to minimize the potential for nonlinear effects. The velocities U (along channel)

and V (cross-channel) are initialized as zero at t ¼ 0. Since three time levels are employed, the initial water

surface profile (corresponding to t ¼ 0) is forced at the nth and ðn� 1Þth time steps. A time step of 60 s is

used. The grid spacing and gridpoints/wavelength in the longitudinal direction and the Courant number for

the different grids are given in Table 1.

Fig. 3(a) shows a comparison of the time series of model predicted surface elevation with the analytical
solution, near the left end of the basin, for a grid spacing of dx ¼ 561m with different grid angles. Fig. 3(b)

Table 1

Grid resolution for the seiche oscillation case

Grid spacing Grid points per wavelength Courant number

2090.9 22 0.28

1095.2 42 0.54

561 82 1.06

277.1 166 2.14

Fig. 3. (a) Comparison of model predicted surface elevations with analytical solution at x ¼ 8000m from the left end of the basin for

the seiching case with different grid angles, Dt ¼ 60 s, Dx ¼ 561m, h ¼ 10m, and L ¼ 46,000m. (b) Relative error of model predicted

elevations with analytical solution x ¼ 8000m from the left end of the basin for the seiching case with different grid angles, Dt ¼ 60 s,

Dx ¼ 561m, h ¼ 10m, and L ¼ 46,000m.
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shows the relative difference in surface elevation between analytical and numerical solutions. The maximum

percentage error in the peak amplitude of the surface elevation after three cycles, for a grid angle of 30� is
found to be 22%, compared to 15% error for grid angles above 50�. Fig. 4(a) shows a comparison of the
time series of the model predicted velocities with analytical solution for a grid spacing of dx ¼ 561m for

different grid angles and Fig. 4(b) shows the relative error between the two. The maximum percentage error

in the peak amplitude of the velocities for a grid with a grid angle of 30� was found to be 20%, compared to
5% error for grids with grid angles above 50�. Model predictions of surface elevations and velocities using a
time step of 6 s for a grid with a non-orthogonality angle of 30� did not improve the results. A gradual
growth of higher harmonics was seen after three cycles (not shown), which has also been reported by

Leendertse et al. [17], while using an explicit scheme and by Leendertse [18], while using an implicit scheme.

The longitudinal velocities were found to be constant across a section, independent of the grid angle.

Transverse velocities of the order of 10�3 m/s were found to develop for a grid having an angle of 30�.
The effect of grid resolution and grid angle on the solution is studied by comparing the Root Mean

Square (RMS) error between the model prediction and analytical solution for the grids.

The variations of the RMS error in surface elevations and velocities with grid angle and grid resolution

are shown, respectively, in Figs. 5(a) and (b). The RMS errors in model predicted surface elevations and

Fig. 4. (a) Comparison of model predicted U-velocities with analytical solution at x ¼ 8000m from the left end of the basin for the

seiching case with different grid angles, Dt ¼ 60 s, Dx ¼ 561m, h ¼ 10m, and L ¼ 46,000m. (b) Relative error of model predicted U-

velocities with analytical solution at x ¼ 8000m from the left end of the basin for the seiching case with different grid angles, Dt ¼ 60 s,

Dx ¼ 561m, h ¼ 10m, and L ¼ 46,000m.
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velocities are found to increase gradually, as the grid resolution decreases from 166 to 22 gridpoints per

wavelength or as the grid angle decreases from 90� to 50� and increases rather sharply for a grid angle of 30�
at resolutions less than 80 gridpoints per wavelength.

4.2. Tidal forcing in a rectangular channel open at one end

A comparison of model predictions with the analytical solution [19] is performed for the case of tidally

forced flow in a channel open at the right end, for grids with different grid angles. A cosine tidal forcing,

given by fðx; tÞ ¼ a cos rt, is applied at the right end of the channel. The origin of the x-axis is taken at th

left end of the channel, corresponding to the reflection point for the standing wave, for which the velocity is

zero for all time. The open boundary is at x ¼ 23,000m.

Following [19], the analytical solutions for the surface elevation and velocity are given by

fðx; tÞ ¼ a
cos kl

cos kx cos rt; ð32Þ

uðx; tÞ ¼ aC
h cos kl

sin kx sin rt; ð33Þ

Fig. 5. (a) RMS error in elevations versus gridpoints per wavelength at x ¼ 8000m from the left end. (b) RMS error in velocities versus

gridpoints per wavelength versus at x ¼ 8000m from the left end.
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Table 2

Grid resolution for the tidal forcing case

Grid points per wavelength Wavelength (m) Period (h)

1400 2.93020E+06 82.18

1200 2.51160E+06 70.44

1000 2.09300E+06 58.70

800 1.67440E+06 46.96

600 1.25580E+06 35.22

400 8.37200E+05 23.48

300 6.27900E+05 17.61

250 5.23250E+05 14.67

200 4.18600E+05 11.74

175 3.66275E+05 10.27

150 3.13950E+05 8.80

125 2.61625E+05 7.34

110 2.30230E+05 6.46

100 2.09300E+05 5.87

Fig. 6. (a) Comparison of model predicted surface elevations with analytical solution at the center of the basin for the tidal

forcing case with Dt ¼ 10min, Dx ¼ 561m, T ¼ 23:5 h, L ¼ 837:2 km, and h ¼ 10m. (b) Relative error of model predicted ele-

vations with analytical solution at the center of the basin for the tidal forcing case with Dt ¼ 10min, Dx ¼ 561m, T ¼ 23:5 h,

L ¼ 837:2 km, and h ¼ 10m.
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where C ¼
ffiffiffiffiffi
gh

p
, C is the wave celerity (or wave speed), h is the depth of the basin, and x is the distance from

the origin.

The following values are used in the numerical solution: l ¼ 23,000m, h ¼ 10m, Dt ¼ 10min,

Dx ¼ 561m, where a is the amplitude at the open end of the basin, h is the water depth, Dt is the time step,
and Dx is the space step. The Courant number is 10.6. Table 2 gives the periods, wavelength, and gridpoints
per wavelength for cases studied, for a water depth of h ¼ 10m.

Fig. 6(a) shows a comparison of model predicted surface elevation with the analytical solution, near the

center of the basin, for a tidal period of T ¼ 23:5 h, for grids with different angles of non-orthogonality. Fig.
6(b) shows the relative error in surface elevation between the two solutions. Themaximumpercentage error in

the peak amplitude of surface elevation is found to be 4.4%, even for grids having an grid angle as low as 30�. It
is observed that the model predicted surface elevations are insensitive to the grid angle (c). Fig. 7(a) shows a
comparison of the velocities from the analytical and numerical solutions, at the center of the basin, and at the

second grid point from the southern boundary in the cross-stream direction. Fig. 7(b) shows the relative error

between two. It is seen that the percentage error in the peak amplitude of the velocities is found to be less than

5% for grid angles greater than 50� and increases sharply to 12% as the grid angle decreases to 30�.
The effect of grid resolution and grid angle on the solution is studied by comparing the RMS error

between the model predictions and the analytical solution for a 10-day period, varying the tidal forcing

Fig. 7. (a) Comparison of model predicted U-velocities with analytical solution at the center of the basin and at the second gridpoint

from the southern boundary for the tidal forcing case with Dt ¼ 10min, Dx ¼ 561m, L ¼ 837:2 km, h ¼ 10m, and T ¼ 23:5 h. (b)

Relative error of model predicted velocities with analytical solution at the center of the basin and at the second gridpoint from the

southern boundary for the tidal forcing case with Dt ¼ 10min, Dx ¼ 561m, L ¼ 837:2 km, h ¼ 10m, and T ¼ 23:5 h.
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period at the open boundary for the grids shown in Fig. 2. Fig. 8 shows that the RMS error in surface

elevation is insensitive to the grid angle for grids with grid resolutions greater than 600 gridpoints per

wavelength. The RMS error is found to increase gradually as the grid resolution decreases from 600 to 200

gridpoints per wavelength or as the grid angle decreases from 90� to 30�. The RMS error in surface ele-
vation is found to increase sharply for grid resolutions less than 200 gridpoints per wavelength or as the grid

angle decreases from 90� to 30�.
Fig. 9 shows that the RMS error in velocities at x ¼ 11,500m from the left end and at the first gridpoint

from the southern boundary is found to increase gradually as the grid angle decreases from 90� to 30� or as
the grid resolution decreases from 1400 to 400 gridpoints per wavelength. The RMS error in velocities

increases sharply with the decrease in grid angle for grid resolutions less than 400 gridpoints per wave-

length. It was seen that the RMS error in velocities at x ¼ 11,500m from the left end and at the second

gridpoint from the southern boundary exhibits a pattern similar to that at the first gridpoint from the

southern boundary, except that the RMS errors are less in this case. The higher RMS error at the

boundaries can be attributed to the one sided difference used at the boundaries. The RMS error in velocities

at the right end near the open boundary is not sensitive to the grid angle, as the grids are not skewed near

Fig. 8. RMS error of the surface elevations versus gridpoints per wavelength at the center and at the first gridpoint from the southern

boundary.

Fig. 9. RMS error of the velocities versus gridpoints per wavelength at the center and at the first gridpoint from the southern

boundary.
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the right end. It is thus seen that the error due to the non-orthogonality of the grid is localized. The RMS

errors are found to increase gradually as the grid resolution decreases from 1400 to 400 gridpoints per

wavelength and sharply for grid resolutions less than 400 gridpoints per wavelength.

The model predicted surface elevations and velocities are insensitive to the grid angle for grid resolutions

greater than 600 gridpoints per wavelength. The error in model predicted velocities are found to increase as

the grid resolution decreases from 1400 to 400 gridpoints per wavelength or as the grid angle decreases from

90� to 30�.

5. Effect of grid angle on the hydrodynamic modeling in Narragansett Bay

The effect of grid angle on the hydrodynamic circulation in Narragansett Bay is studied using three

different boundary-fitted grid configurations. The bathymetry of Narragansett Bay is shown in Fig. 10. The

mean depth of the bay is 8.3m. An overview of the hydrodynamic circulation in Narragansett Bay is given

in Gordon and Spaulding [20]. The boundary-fitted grid for the study area is shown in Fig. 11. A very fine

grid resolution (Fig. 12) is used in Greenwich Bay, located in the western side of the Narragansett Bay, to
compare the model predicted currents with the observed currents at the mouth of the Greenwich Bay. The

major advantages of a generalized non-orthogonal boundary-fitted grid in fitting the coastal boundaries

appropriately in the narrow coves are clearly shown in Fig. 12. The grid size ranges from 75 to 750m and

consists of 4480 grid cells. Depth data (Fig. 10) for the area were derived from the NOAA bathymetric

Fig. 10. Narragansett Bay study area and its bathymetric contours.
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charts for Narragansett Bay. Data were mapped to provide a mean depth for each boundary-fitted grid cell

in the study area.
Table 3 gives a summary of the number of grid cell corners for various grid angles in those ranges for

three different grids, Grid1, Grid2, and Grid3, used in this study. Grid2 (not shown in the figures) was

constructed as a variation of Grid1, but with grid angles less than 40� and Grid3 is constructed as a very
coarse grid. It can be seen from Table 3 that 95% of the grid cells have grid angles above 60�. A two-di-

mensional vertically averaged hydrodynamic model simulation of flow in Narragansett Bay was performed

using the three grids. The convective, coriolis, and baroclinic terms were neglected and a quadratic bottom

friction coefficient of 0.0035 determined by Spaulding et al. [21] was used. The observed sea surface ele-

vation at 6min intervals, at the National Ocean Service (NOS) station at Newport [22] was used as a forcing
at the southern boundary of the grid at Newport (Fig. 10). The model predicted surface elevations com-

pares well with the observed surface elevations using Grid1 [22] at Quonset Point, Conimicut point, Fall

River and Providence (Figs. 13(a)–(d)). The RMS error between the observed and predicted surface ele-

vation using the three grids, at the four NOS stations for a 60-day period for the three grids is shown in

Table 4. It is seen that the model predicted surface elevations are insensitive to the grid quality parameters.

It is known that the 85% of the tidal energy of the tides in Narragansett Bay is concentrated on M2 tide,

which has a period of 12.42 h. A single S4 current meter deployed at mid-depth at station C1 (Fig. 10) by

Applied Science Associates [23] is used to compare the model predicted currents. An S4 current meter
measures current speed, direction, wave, tide, turbidity, and water quality parameters [23]. The model

predicted U and V velocities for the grid, grid1 at station C1, compare well with the observed data as shown

in Figs. 14(a) and (b).

Taking the approximate length of the study area as 35 km and the depth to be 8.3m, the wavelength of

the M2 tidal wave propagating into the Narragansett Bay works out to be 420 km. The grid spacing used

Fig. 11. Grid configuration for the Narragansett Bay (Grid1) (unpublished D. Mendelsohn, Applied Science Associates).
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for the grid ranges from 750 to 75m and the corresponding grid resolution ranges from 5600 to 560

gridpoints per wavelength and this grid resolution is found be adequate for modeling the tidal circulation in

Narragansett Bay and hence the model predictions are found to be insensitive to the grid angle.

Fig. 12. Detail of the Grid (Grid1) in Greenwich Bay.

Table 3

Range of grid angles for the Narragansett Bay grid

Range of c Number of grid cell corners

Grid1 Grid2 Grid3

0–30� 19 0 0

30–40� 56 0 3

40–50� 197 92 6

50–60� 751 631 19

60–70� 2072 2111 46

70–80� 6093 6157 179

80–90� 8492 8479 575
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Fig. 13. Comparison of observed and predicted surface elevations in: (a) Quonset point; (b) Conimicut point; (c) Fall River;

(d) Providence.

Table 4

The RMS error between observed and predicted surface elevations at the NOAA/NOS stations

Station RMS error (m)

Grid1 Grid2 Grid3

Conimicut 0.058 0.058 0.059

Quonset 0.063 0.063 0.063

Fall River 0.070 0.069 0.070

Providence 0.063 0.062 0.063

Fig. 14. (a) Comparison of observed and model predicted U-velocities at C1 station. (b) Comparison of observed and model predicted

V-velocities at C1 station.
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To study the effect of grid resolution on the model predictions, a coarse grid (Grid3), shown in Fig. 15

with grid spacing ranging from 1300 to 2000m, is used. The grid resolution for grid3 works out to be 200–

310 for the M2 tide and the RMS error in model predicted surface elevations is found to be insensitive to

the grid spacing, even at this grid resolution as shown in Table 5. However, the RMS error in model

predicted velocities is found to increase by atleast 1 cm/s for coarse grid, when compared to the fine grid.

6. Conclusions

Results of the truncation error analysis show that the truncation error terms due to first and second

derivative terms are functions of grid angle and aspect ratio. The coefficient of the truncation error was

shown to increase, with the decrease in the grid angle or increase in the aspect ratio.

The RMS errors in surface elevation and velocities for the case of seiching in a rectangular basin are

found to increase gradually as the grid resolution decreases from 166 to 22 gridpoints per wavelength or as

Fig. 15. Coarse grid configuration for the Narragansett Bay (Grid3).

Table 5

The RMS error between observed and predicted velocities at C1 station

Station RMS error (m/s)

Grid1 Grid2 Grid3

U-velocity 0.042 0.042 0.056

V -velocity 0.034 0.033 0.040
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the grid angle decreases from 90� to 50�. The RMS error in model predicted velocities are found to increase
sharply as the grid resolution decreases for grid with a grid angle of 30�.
The model predicted surface elevations for the case of tidal forcing in a rectangular channel are found to be

insensitive to the grid angle at resolutions higher than 600 grids per wavelength. The error in model predicted

velocities are found to increase as the grid resolution decreases from 1400 to 400 gridpoints per wavelength or

as the grid angle decreases from 90� to 30�. The RMS error in model predicted velocities are found to be more
pronounced for low grid angle near the boundaries and this can be attributed to the one-sided difference near

the boundaries. The grid angle dependence evident in themodel predicted velocities, but not seen in the surface
elevation can be attributed to the fact that the velocities are transformed into the computational plane.

A two-dimensional modeling of tidal circulation in Narragansett Bay using three different grids con-

firmed that the model predicted surface elevations are insensitive to the grid angle at grid resolutions

ranging from 500 to 200 gridpoints per wavelength. However, the RMS errors in model predicted currents

were found to increase by 1 cm/s as the grid resolution decreases from 600 to 200 gridpoints per wavelength.

We conclude from this study that the grid angle and grid resolution affects the accuracy of the model

predicted currents and the numerical dispersion increases with the decrease in grid angle or grid resolution

and these are in agreement with the conclusions reached by Sankaranarayanan and Spaulding [2] through a
Fourier analysis of the discretized equations in boundary-fitted coordinates.
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Appendix A

This section gives the expressions needed to evaluate the truncation errors TE1, TE2, and TE3 appearing

in Eqs. (24), (26), and (29).

The first derivatives of function f with respect to n and g can be expressed using Eqs. (A.1) and
(A.2)

fn ¼ fhhn þ f//n; ðA:1Þ

fg ¼ fhhg þ f//g: ðA:2Þ

The first derivative of function f with respect to / and h can be evaluated using Eqs. (A.3) and (A.4)

f/ ¼ ðfnhg � fghnÞ=J ; ðA:3Þ

fh ¼ ðfg/n � fn/gÞ=J : ðA:4Þ

The second derivatives of function f with respect to n and g and the cross-derivatives of function f with
respect to n and g can expressed using Eqs. (A.5)–(A.7)

fnn ¼ fhhnn þ f//nn þ hnðfhhhn þ f/h/nÞ þ /nðf/hhn þ f///nÞ; ðA:5Þ
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fgg ¼ fhhgg þ f//gg þ hgðfhhhg þ f/h/gÞ þ /gðf/hhg þ f///gÞ; ðA:6Þ

fng ¼ ðfhhhg þ f/h/gÞhn þ /nðf/hhg þ f///gÞ þ fhhgn þ f//gn: ðA:7Þ

The second derivatives of function f with respect to / and h and the cross-derivatives of function f with
respect to / and h can expressed using Eqs. (A.8)–(A.10)

f// ¼ ðfn/g

n
� fg/nÞðhgÞ2hnn þ fg/ggðhnÞ3 � fn/nnðhgÞ3

o.
J 3 þ ½ðfn/g

n
� fg/nÞhgg

� ðfn/gg þ 2fg/gnÞhg
ðhnÞ2
o.

J 3 � ðfg/n

hn
þ fn/gÞ2hghgn þ ðfg/nn þ 2fn/gnÞðhgÞ2

i
hn

o.
J 3

þ fnnðhgÞ2
n

þ fggðhnÞ2 � 2fgnhghn

o.
J 2; ðA:8Þ

fhh ¼ fgð/gÞ
2/nn

hn
þ fg/ggð/nÞ

2 � 2fg/g/gn/n

i
hn

o.
J 3 þ fgð/nÞ

3
hn

� fn/gð/nÞ
2
i
hgg

þ 2fnð/gÞ
2/n

h
� 2fg/gð/nÞ

2
i
hgn

o.
J 3 � fnð/gÞ

2/nn

hn
þ fn/ggð/nÞ

2 � 2fn/g/gn/n

i
hg

þ fggJð/nÞ
2
o.

J 3 þ
n
� 2fgnJ/g/n þ fnnJð/gÞ

2 þ fnð/gÞ
3

h
� fgð/gÞ

2/n

i
hnn

o.
J 3; ðA:9Þ

f/h ¼ fg/g/n

hn
� fnð/gÞ

2
i
hghnn þ ðfg/g/gn � fg/gg/nÞðhnÞ2

o.
J 3 þ fgð/nÞ

2
hn

� fn/g/n

i
hgghn

þ fnð/gÞ
2

h
� fg/g/n

i
hgnhn

o.
J 3 þ ðfn/gg

��
þ fg/gnÞ/n � ðfn/gn þ fg/nnÞ/g

�
hghn

�
=J 3

þ fn/g/n

hn
� fgð/nÞ

2
i
hghgn þ ðfn/g/nn � fn/gn/nÞðhgÞ2

o.
J 3 þ ð2fgn/nhg

�
� fnn/gÞhg

� fgg/nhn � fgnJ
�
=J 2: ðA:10Þ

The third derivatives of function f with respect to n and g and the cross-derivatives of function f with
respect to n and g can expressed using Eqs. (A.11)–(A.14)

fnnn ¼ hn fhhhnn

�
þ hnðfhhhhn þ f/hh/nÞ þ /nðf/hhhn þ f//h/nÞ þ f/h/nn

�
þ /n f/hhnn

�
þ /nðf//hhn þ f////nÞ þ hnðf/hhhn þ f//h/nÞ þ f///nn

�
þ 2hnnðfhhhn þ f/h/nÞ þ 2/nnðf/hhn þ f///nÞ þ fhhnnn þ f//nnn; ðA:11Þ

fnng ¼ hn ðfhhhhg

�
þ f/hh/gÞhn þ fhhhgn þ /nðf/hhhg þ f//h/gÞ þ f/h/gn

�
þ /n ðf/hhhg

�
þ f//h/gÞhn þ f/hhgn þ /nðf//hhg þ f////nÞ þ f///gn

�
þ hgnðfhhhn þ f/h/nÞ þ /gnðf/hhn þ f///nÞ þ /nnðf/hhg þ f///gÞ
þ fhhgnn þ f//gnn þ ðfhhhg þ f/h/gÞhnn; ðA:12Þ

fngg ¼ fhhhgg

�
þ hgðfhhhhg þ f/hh/gÞ þ /gðf/hhhg þ f//h/gÞ þ f/h/gg

�
hn

þ /n f/hhgg

�
þ /gðf//hhg þ f////gÞ þ hgðf/hhhg þ f//h/gÞ þ f///gg

�
þ 2ðfhhhg þ f/h/gÞhgn þ 2/gnðf/hhg þ f///gÞ þ f//ggn þ fhhggn; ðA:13Þ
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fggg ¼ hg fhhhgg

�
þ hgðfhhhhg þ f/hh/gÞ þ /gðf/hhhg þ f//h/gÞ þ f/h/gg

�
þ /g f/hhgg

�
þ /gðf//hhg þ f////gÞ þ hgðf/hhhg þ f//h/gÞ þ f///gg

�
þ 2hggðfhhhg þ f/h/gÞ þ 2/ggðf/hhg þ f///gÞ þ fhhggg þ f/hggg: ðA:14Þ
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