
ARTICLE IN PRESS
0278-4343/$ - see

doi:10.1016/j.csr

�Correspondi
fax: +1401 789

E-mail addre

(S. Sankaranara
Continental Shelf Research 26 (2006) 1571–1594

www.elsevier.com/locate/csr
Development and application of a three-dimensional orthogonal
coordinate semi-implicit hydrodynamic model

S. Sankaranarayanan�, Matthew C. Ward

Applied Science Associates, 70, Dean Knauss Drive, Narragansett, RI-02882, USA

Received 19 May 2005; received in revised form 31 March 2006; accepted 14 April 2006

Available online 30 June 2006
Abstract

A three-dimensional, orthogonal coordinate semi-implicit hydrodynamic model in spherical coordinates that can be

applied to estuarine, coastal sea, and continental shelf waters is presented. A generalized orthogonal coordinate

transformation on the horizontal and a sigma coordinate transformation on the vertical, are applied to the governing

equations. The governing equations are decomposed into exterior and interior modes and solved using a semi-implicit

solution technique. Second-order accurate spatial and temporal discretization schemes are used on a space staggered grid.

A simple flooding and drying technique is used to model the tidal flats. The model results are tested against analytical

solutions for tidal circulation in an annular channel and steady residual flow generated by wind, and density differences in

a rectangular channel. The predictions from the model showed very good comparison with analytical solutions for all the

test cases. Three-dimensional circulation in Narragansett Bay was then studied using the developed model. The model

predicted surface elevations, three-dimensional instantaneous and mean currents, salinities, and temperatures in

Narragansett Bay are compared with the observations. Mean errors in the model predicted surface elevations and

velocities are less than 3% and 15%, respectively. The spring and neap cycles, the shorter duration but stronger ebb

dominant currents and the double flood phenomena seen in the observations are reproduced by the model. The mean

estuarine currents, and the sub-tidal currents seen in the observations are also well reproduced by the model. Correlation

coefficients for salinity and temperatures exceed 0.95 and 0.87, respectively.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Three-dimensional hydrodynamic models using
different numerical techniques have been used to
predict circulation and transport in estuarine,
front matter r 2006 Elsevier Ltd. All rights reserved
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coastal and shelf waters. Some of the early
hydrodynamic models employed finite difference
schemes on square grids. Boundary-fitted models
(Spaulding, 1984; Sheng, 1986; Swanson, 1986;
Muin and Spaulding, 1997a) using non-orthogonal
grids have the flexibility to generate grids for
domains with complex geometries. The transforma-
tion of the shallow water equations in a boundary-
fitted coordinate system generates several extra
terms in the momentum equations (Muin and
.
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Spaulding, 1996). Sankaranarayanan and Spaulding
(2003a) showed through analytical model testing
and truncation error analysis that the error in the
model predictions increases as the grid angles
deviate from orthogonality in a Boundary-fitted
coordinate system. On the other hand, orthogonal
curvilinear coordinate transformations (Blumberg
and Herring, 1987; Hamrick, 1995; Willemse et al.,
1985; Song and Haidvogel, 1994) generates only a
fewer extra terms, but retaining the simplicity of the
familiar Cartesian coordinate equations.

The Estuarine Coastal Ocean model (ECOM)
developed by Blumberg and Mellor (1987) uses
explicit external mode and implicit internal mode
solutions, with the external mode requiring smaller
time steps. The Environmental Fluid Dynamics
Code (EFDC) developed by Hamrick (1995) is
another orthogonal curvilinear coordinate hydro-
dynamic model that uses semi-implicit external
mode and implicit internal mode solutions. The
present model uses the governing equations in a
spherical coordinate system and hence can be
applied to large geographical regions, whereas
ECOM and EFDC use equations in a Cartesian
coordinate system.

It should also be noted that it could be rather
difficult to generate orthogonal grids, fitting com-
plex coastlines, without deviating from grid ortho-
gonality. Attempts to generate exact orthogonal
grids for complex coastlines with internal island
groups using elliptical grid generation techniques
met with limited success (Chan et al., 1994). Eca
(1996) was able to generate nearly orthogonal grids
with the use of control functions, and by a judicious
movement of boundary points.

Finite Element Methods (FEMs) also have the
capability to represent complex geometries in a
natural way, using triangular and quadrilateral
elements. Early applications of FEM to shallow
water equations using Galerkin methods exhibited
extreme oscillations in the solution that had to be
damped with large amounts of viscosity. Lynch and
Gray (1979) found that the transformation of the
continuity equation to a higher-order wave equation
eliminated the oscillations seen in earlier FEM
solutions. Ip et al. (1998) developed a finite element
model using a two-dimensional kinematic form of
the wave equations, including a Darcian flow
component for simulating flow during wetting and
drying. Walters (2005) gives a good historical view
of the developments in FEM for solving shallow
water equations. Stelling and Duinmeijer (2003)
have proposed a numerical technique with staggered
grids, using numerical integration techniques, that
can be applied to rapidly varied flow problems such
as hydraulic jumps and bores and large scale
inundation problems.

Recently, Finite Volume Methods (FVM) that
combine the advantages of finite element (for
geometric flexibility) and finite difference methods
(for ease of calculation of fluxes through faces) have
been used to solve shallow water equations. (Ward,
1999; Chen et al., 2003; Zhang et al., 2004).

The sigma coordinate system used in the vertical
direction uses the same number of layers, indepen-
dent of its depth and hence it is very effective in
resolving shallow regions. Estuaries with no abrupt
changes in bathymetry are modeled well using sigma
coordinate system (Oey et al., 1985). However, the
sigma coordinate system is known to introduce
errors in the baroclinic pressure gradient terms,
while encountering sharp topographic changes such
as shelf breaks and has been discussed in detail in
the literature (Mellor et al., 1994; Haney, 1991).
Mellor et al. (1998) classified the errors due to sigma
coordinate pressure gradient as two types namely,
(i) sigma error of the first type caused due to two-
dimensional baroclinic terms, that decays with time
and hence rather benign, and (ii) sigma error of the
second type that occurs in three-dimensional flows.
Many numerical schemes have been proposed to
reduce the errors due to sigma coordinate system
(Stelling and van Kester, 1994; Slordal, 1997; Chu
and Fan, 1997; Shchepetkin and McWilliams, 2003;
Huang and Spaulding, 1996, 2002). Luo et al. (2002)
developed an eta-coordinate version of the Prince-
ton Ocean Model and showed the reduction in
pressure gradient errors over sigma coordinate
systems for the seamount problem with steep slopes.
Sigma coordinate systems are continuous at the
surface and bottom, whereas eta-coordinate system
is continuous at the surface and stepwise at the
bottom. Eta-coordinate system developed by Mes-
singer (1984) is currently used in many numerical
atmospheric models (http://meted.comet.ucar.edu/
nwp/pcu2/index.htm).

The main objective of this paper is to present the
development, testing and application of a three-
dimensional hydrodynamic model with generalized
orthogonal curvilinear coordinates on the horizon-
tal and a sigma coordinate on the vertical, that can
be rapidly implemented for real-time forecasting in
coastal and estuarine waters. Some of the recent
developments in hydrodynamic modeling outlined

http://meted.comet.ucar.edu/nwp/pcu2/index.htm
http://meted.comet.ucar.edu/nwp/pcu2/index.htm
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in this study show a lot of promise for solving
situation specific problems, such as rapidly varied
flows (Stelling and Duinmeijer, 2003), but their use
in real-time forecasting of a generic water body may
not be warranted. The model reported in this study
retains the semi-implicit time integration techniques
given in Muin and Spaulding (1997a). Since the
governing equations in the present study are very
different than that given in Muin and Spaulding
Momentum equation in x-direction:
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Momentum equation in Z-direction:
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Conservation of substance:
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(1997a), the model results are tested against
analytical solutions for tidal circulation in an
annular channel. The model was also tested against
steady residual flow generated by wind and density
differences in a rectangular channel. The model is
then applied to study the three-dimensional circula-
tion in Narragansett Bay. Skill assessment of the
model is performed, by comparing the model
predictions with the observations in Narragansett
Bay.

2. Governing equations

The equations of motion and continuity are
expressed in a generalized orthogonal curvilinear
coordinate system (Kantha and Clayson, 2000) on
the horizontal, with the ability to resolve arbitrary
topography and also the flexibility to refine the grid
in regions of particular interest. The derivation of
metric tensors (scale factors) in a spherical coordi-
nate system is given in Appendix B. An independent
sigma coordinate system is applied on the vertical to
resolve bathymetric variations with a constant
number of layers.

2.1. Continuity equation:
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where t is the time, u,v and w the velocities in the x,
Z, and r directions, respectively; f the coriolis
parameter; z the surface elevation; R the radius of
the earth; g the gravity; r0 the average water
density; r the water density; Av the vertical eddy
viscosity of momentum; Dv the vertical eddy
diffusivity of constituent, S the Salinity (psu), Y
the temperature (1C), Dh the horizontal eddy
diffusivity of constituent and q is the concentration
of a conservative substance such as S or Y.

Eqs. (1)–(4) assume the following: the flow is
incompressible, density differences are neglected
unless multiplied by gravity (Boussinesq approx-
imation), the vertical acceleration is small and the
horizontal stresses are neglected. The salinity and
temperature are related to density through the
equation of state (UNESCO, 1981).

Substitutions,
ffiffiffiffiffiffi
g11
p

¼
ffiffiffiffiffiffi
g22
p

reduces Eqs. (1–4) to
that for a conformal coordinate system (Wanstarth,
1977; Lin and Chandler-Wilde, 1996) which is a
special case of an orthogonal coordinate system.
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Equations for the Cartesian coordinate system can
be derived from Eqs. (1)–(4) by substituting,ffiffiffiffiffiffi

g11
p

¼
ffiffiffiffiffiffi
g22
p

¼ 1, and R ¼ 1.
The parametrization of the sub-grid scale diffu-

sion of turbulence in the vertical direction using
turbulent schemes ranging from simple flow-depen-
dent eddy viscosity models (Aldridge and Davies,
1993), and one equation turbulent kinetic energy
models (Davies and Jones, 1990; Muin and Spauld-
ing, 1997a) with the length scale specified using the
approach suggested by Blackadar (1962) to two-
equation turbulence closure models using an equa-
tion each for turbulent kinetic energy and mixing
length (Blumberg and Mellor, 1987; Blumberg et al.,
1992) are now being routinely used in three-
dimensional hydrodynamic models. Xing and Da-
vies (1996) showed that there are no significant
differences between the tidal currents obtained
using a simple eddy viscosity model and that using
various turbulence closure models.

In the present study, the sub-grid scale diffusion
of turbulence has been parametrized using a simple
flow-related eddy viscosity coefficient (Av). Keeping
the eddy viscosity to be vertically constant, the
horizontal and temporal variations of Av were
accounted for using the formulation given by
Aldridge and Davies (1993) as Avðx; y; tÞ ¼ K�

ðU2 þ V 2Þ �D, where U and V are the vertically
averaged velocities in the x and y directions,
respectively, and D is the total water depth. The
value of K is constant at 0.001. The vertical
variations in eddy viscosity and eddy diffusivity,
that can be very useful for strongly stratified flows,
can be obtained by using a function that depends on
gradient Richardson number (Ri) which relates the
local gravitational force to the inertial force,
suggested by Munk and Anderson (1948) as

AvðzÞ ¼ Avð1þ a RiÞ�n, 5(a)

DvðzÞ ¼ Dvð1þ b RiÞ�m, 5(b)

where Ri ¼
2g

rh

qr=qs

qu=qs
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þ ðqv=qsÞ2
A number of

authors have suggested values for the coefficients a,
b, m, and n in the above equations (Blumberg, 1986)
of which the values (a ¼ b ¼ n ¼ 1, and m ¼ 2)
suggested by Officer (1976) is most commonly used.
Constants Av, and Dv can be determined from the
mixing length theory or arbitrarily calibrated to the
available data.
3. Boundary conditions

The surface and bottom boundary conditions are
given by

At the surface s ¼ 0;
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At the bottom s ¼ �1;
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where ra is the density of air; r0 the density of water;
Wx and WZ the wind speeds, respectively in the x
and Z directions, respectively ; and Ca and Cd is the
quadratic surface and bottom drag coefficients.

The vertical boundary conditions are

w ¼ 0 at s ¼ 0 and s ¼ �1. (8)

The land boundaries are assumed impermeable, the
normal component of the velocity is set to zero. Sea
surface elevation or tidal harmonic constituents can
be specified as a function of time along the open
boundaries, as a classic Dirichlet condition. Alter-
natively, a Sommerfield radiation boundary condi-
tion (Sommerfield, 1979) can be used as
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which allows the wave propagating towards an eastern
boundary exit undisturbed through that boundary.

At the closed boundaries the transport of
substance is zero. At the open boundaries, the
concentration should be specified during the inflow.
On outflow, the substance is advected out of the
model domain according to
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R
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Net heat flux is applied at the surface, while solving
the thermal transport equation. Net heat flux is
given by

Net heat flux ðW=m2Þ ¼ Hs �H l �Hc �He,

where Hs is the solar radiation, which can be
obtained from National Climatic Data Center, Hc

the conductive heat flux that occurs between the
atmosphere and water body, based on Edinger et al.
(1974), Hl the net atmospheric radiation as a result
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of downward radiation from the atmosphere and
the upward radiation emitted by the water surface
and He is the evaporative heat flux, related to the
conductive heat flux through Bowens ratio, based
on Edinger et al. (1974).

A recent application of Edinger’s formulations to
simulate water column heating in Onondaga lake
can be found in Ahsan and Blumberg (1999).
4. Two-dimensional vertically averaged equations of

motion and continuity

The three-dimensional hydrodynamic equations
(Eqs. (1)–(3)), contain fast moving external gravity
waves and slow moving internal gravity waves. The
equations of motion are split into vertically
averaged equations (exterior mode) and vertical
structure equation (interior mode). This technique
allows the calculation of free surface elevation
from the exterior mode and the three-dimensional
currents and thermodynamic properties from
the interior mode. The external mode equations
are obtained by integrating Eqs. (1)–(3) from s ¼ 0
to �1.

The vertically averaged continuity equation is
given by
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Momentum equation in x-direction:
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Momentum equation in Z-direction:
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5. Solution methodology

The two-dimensional vertically averaged equa-
tions of motion and continuity are solved using a
semi-implicit method (Madala and Piacsek, 1977;
Swanson, 1986; Muin and Spaulding, 1996; Ward,
1999) in which the surface elevation is solved
implicitly while the other terms in the equation
such as the Coriolis, bottom stress, density gradient,
and advective terms are solved explicitly. The
momentum equations are substituted into the
continuity equation to obtain a Helmholtz equation
in terms of surface elevation. The spatial discretiza-
tion is based on a space staggered grid system (Grid
C, Arakawa and Lamb, 1977). The velocities u and v

are defined at the center of the layer in the vertical
direction, but defined at a staggered fashion on the
horizontal. The vertical velocity, o is also defined at
the center of the layer in the vertical direction and
center of the cell in the horizontal direction. The
variables salt, temperature, density, eddy viscosity
and eddy diffusivity are also defined at the center of
the cell as well. Time is discretized using a three level
scheme with a weighting factor of 1.5 (Kinnmark,
1985). Thus the numerical discretization scheme
used is second-order accurate in space and time. The
discretized Helmholtz equation is solved using
sparse matrix method to obtain the surface eleva-
tion. The vertically averaged velocities are then
obtained from the vertically averaged momentum
equations, using the new surface elevation. The
stability and dispersion analyses of two-dimensional
shallow water equations in curvilinear coordinates
for the spatial and temporal discretizations adopted
in this study can be found in Sankaranarayanan and
Spaulding (2003b). The Shapiro filter (Shapiro,
1970) can be employed as a replacement for
simulating sub-grid scale viscosity. The Shapiro
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filter helps to eliminate high wave number content
in the model fields (Haidvogel and Beckmann,
2000).

The three-dimensional velocities are expressed in
terms of the vertically averaged velocity (U,V) and a
deviation velocity (u0,v0) from the vertically aver-
aged velocity. Subtracting the vertically averaged
momentum equations from the three-dimensional
momentum equations gives the deviation velocity
equations of motion:

qu0D
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1

D

q
qs

Av
qu0

qs

� �
þ A, (14)

qv0D

qt
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1

D

q
qs
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qs
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where A and B are the non-barotropic terms in the
equations of motion and these terms are solved
explicitly. The diffusion term is solved implicitly
using a three-level scheme to damp out spurious
oscillations (Fletcher, 1988). The algorithm is
second-order accurate in space and time. A tridia-
gonal set of equations in the unknown velocity
deviation is solved using the Thomas algorithm. The
three-dimensional velocity structure is then ob-
tained by adding the vertical deviations of the
velocity to the vertically averaged velocities. Both
the exterior and interior modes are solved sepa-
rately. Such a technique has proven to be efficient in
solving three-dimensional shallow water equations
Fig. 1. Grid configuration for Annular Channel Test using a

10� 35 grid, with Dr ¼ 3760m and Dy ¼ 101.
(Madala and Piacsek, 1977; Swanson, 1986; Muin
and Spaulding, 1997a).

The salt and temperature transport equations are
solved by a simple explicit technique, except for the
vertical diffusion term that is solved by an implicit
scheme to ease the time step restriction due to the
small vertical length scale. Advection term is solved
using an upwind scheme (first-order accurate) that
introduces artificial diffusivity. Higher-order up-
wind schemes (Smolarkiewicz, 1984; Smolarkiewicz
and Grobowski, 1990), commonly referred to as
Multidimensional Positive Definite Advective
Transport Algorithm (MPDATA) have been found
Fig. 2. (a) Comparison of model predictions with analytical

solution for surface elevations at maximum forcing amplitude

(z0 ¼ 0.5m, r1 ¼ 47,800m, r2 ¼ 85,400m, h ¼ 10m). (b) Com-

parison of model predictions with analytical solution for radial

velocities at maximum forcing amplitude (z0 ¼ 0.5m,

r1 ¼ 47,800m, r2 ¼ 85,400m, h ¼ 10m).



ARTICLE IN PRESS

Fig. 3. (a) Comparison of model predicted vertical structure of

the longitudinal velocities with analytical solution for wind

forcing (ts ¼ 0.18N/m2, Av ¼ 0.001m2/2, k ¼ 0.001m/s,

h ¼ 11m). (b) Comparison of model predicted vertical structure

of the longitudinal velocities with analytical solution for density

gradient forcing (l ¼ 0.001087kg/m4, Av ¼ 0.001m2/s,

k ¼ 0.001m/s, h ¼ 11m).
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to be effective in reducing the artificial diffusion
introduced by the first-order upwind scheme. A
truncated version of the MPDATA, including only
the diagonal terms in the diffusion tensor, neglect-
ing the off-diagonal cross derivative terms, has been
implemented in the present model, to minimize the
artificial diffusion due to the first-order upwind
scheme.

5.1. Procedure for wetting and drying

The wetting and drying procedure used in the
model presented in this study closely follows the
technique outlined in Falconer and Chen (1991). The
total water depth (surface elevation+water depth) at
the center of the cell is calculated at the end of every
time step. If the total depth at any cell is less than the
drying height (EDRY), then that cell is allowed to
become dry. Then the total water depth at all the four
cell faces are calculated and if all the four cell face
depths are less than EDRY, then that cell is allowed
to become dry. As a grid cell was allowed to dry it
was assumed that a thin layer of water remained over
the cell. Then as the simulation proceeds, all the dry
cells are considered for flooding. If any one of the
four surrounding cells are wet, then the water depth
at the sides of the cell are calculated and if the water
depth is greater than the wetting height (EWET), then
that cell is allowed to become wet. In the present
model, the values of EDRY and EWET have been
kept, respectively, as 0.2 and 0.4m. Numerical
experiments with low values of EDRY and EWET
caused numerical instabilities in the solution surface
elevations. It should be noted that this flooding and
drying procedure could propagate only one grid cell,
every time step. Hence, the time step used in the
calculations should be less than Dx=

ffiffiffiffiffi
gh

p
to minimize

the wave-type disturbances at the moving boundary,
when the wetting and drying procedure is switched on
in the model.

6. Model testing

The model was tested against analytical solutions
for tidal circulation in an annular channel, and
steady residual flow generated by wind, and density
differences in a rectangular channel.

6.1. Tidal forcing in an annular channel

The propagation of a tidal wave into an annular
section (3501 arc) was performed. At the inner
radius and side walls no flow was allowed while the
free surface elevation was prescribed to vary
sinusoidally in time with uniform amplitude and
phase along the outer radius. Neglecting Coriolis
and momentum advection terms, the analytical
solutions for surface elevation and radial velocity
are given by Lynch and Gray (1978) as

zðr; tÞ ¼ Re ½AJ0ðbrÞ þ BY 0ðbrÞ� eiot

 �

, (16)

V rðr; tÞ ¼ Re ½�AJ1ðbrÞ � BY 1ðbrÞ�
io
bh0

eiot

� 
,

(17)
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Fig. 4. Narragansett Bay study area and its bathymetry.
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where, A ¼ z0Y 1ðbr1Þ= J0ðbr2Y 1ðbr1Þ � J1ðbr1ÞÞY 0½

ðbr2Þ�;B ¼ �z0J1ðbr1Þ= J0ðbr2ÞY 1Þðbr1Þ � J1ðbr1Þ½

Y 0ðbr2Þ�, and b2 ¼ (o2
�iok)/gh, o ¼ 2p/T, r1 and

r2 ¼ inner and outer radii, respectively, where Jp and
Yp are the Bessel functions of the first and second
kinds, respectively, of order p; i ¼

ffiffiffiffiffiffiffi
�1
p

; o the
angular frequency; h0 is the water depth and k is
the linear bottom friction coefficient.

The grid configuration shown in Fig. 1 is used to
test the model. The inner (r1) and outer (r2) radii are
kept, respectively, as 47,800 and 85,400m. The
amplitude (z0) of the sinusoidal wave is 0.5m,
T ¼ 12.42 h, and the depth of the configuration is
kept constant at 10m. Figs. 2(a) and (b) show,
respectively, a comparison of the observed and
model predicted surface elevations and radial
velocities at maximum conditions, for a model time
step of 600 s. The errors in the model predicted
surface elevations are less than 0.8% and the
maximum error was found to occur near the inner
radius. The maximum error in the radial velocity of
2.5% was also found to occur near the inner radius.
The error in the model predicted surface elevations
and velocities remained the same for a model time
step of 1200 s. The model predicted current pattern
clearly reproduced the radial symmetry exhibited by
the analytical solution.

6.2. Residual flow

The ability of the model to predict residual flow
was tested for a rectangular basin using constant
vertical viscosity and density. Taking the case of a
closed rectangular channel, with constant depth,
model tests were performed for (i) constant surface
wind stress and (ii) longitudinal density gradient as
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Table 1

Range of grid angles for the grid

Range of grid angle No. of grid cell corners

30–401 4

40–501 78

50–601 248

60–701 1489

70–801 4580

80–851 4388

85–901 7347
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forcing functions. Neglecting the advection, Cor-
iolis, and horizontal diffusion of momentum, the
steady-state expression for the vertical distribution
of longitudinal velocities can be derived following
Officer (1976) as

u ¼ gi
z2

2Av
�

h

k
�

h2

2Av

� 
�

gl
r

z3

6Av
þ

h2

2k
þ

h3

6Av

� 

þ
ts
r

z

Av
þ

1

k
þ

h

Av

� 
. ð18Þ

The expression for surface slope would be

gi ¼
�gl=rfh4=8Av þ h3=2kg þ ts=rfh

2=2Av þ h=kg

h3=3Av þ h2=k
,

(19)
Fig. 5. Grid for th
where l is the horizontal density gradient, g the
gravity, i the water surface slope, h the water depth,
k the linearized bottom friction coefficient, ts the
e study area.
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Fig. 6. (a) Observed wind records at Providence airport. (b) Hourly freshwater flows into Narragansett Bay.
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surface wind stress and Av is the vertical eddy
viscosity.

6.3. Wind forcing

The residual circulation in an 11m deep basin,
induced in by a uniform wind stress of 0.182 N/m2

applied at the surface, equivalent to a wind speed of
10m/s is computed using the model. Assuming a
vertically constant eddy viscosity of 0.001m2/s and
keeping the bottom friction coefficient to be
0.001m/s, the model predicted vertical distribution
Fig. 7. (a) Comparison of Observed and model predicted surface elevati

surface elevations at Conimicut.

Table 2

Statistical evaluation of model performance for instantaneous elevation

Station Number of data points Data range (m)

Quonset Point 4081 2.132

Conimicut 4081 2.293
of longitudinal velocities, using 11 equal vertical
layers, compares well with the analytical solution as
shown in Fig. 3(a) and the error in the model
predicted velocities are less than 4.2%.

6.4. Density gradient forcing

The seaward flow of river water at the head of the
estuary causes a density gradient between the fresh
water at the head of the estuary and sea water at the
mouth of the estuary. The longitudinal density
gradient caused due to this density difference plays a
ons at Quonset. (b) Comparison of observed and model predicted

s

RMS error (m) RMS error (%) Correlation coefficient

0.064 3.0 0.999

0.043 1.87 0.997
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major role in the estuarine circulation pattern. The
circulation induced by a constant density gradient is
simulated using the present model and compared
with that obtained using the analytical solution
given by Eqs. (18) and (19) Assuming the density to
be vertically constant, the density varies from 1000
to 1025 kg/m3 over a distance of 23 km. The steady-
state vertical distribution of longitudinal velocities
obtained using the model, using a vertical eddy
viscosity of 0.001m2/s and linearized bottom fric-
tion coefficient as 0.001m/s compares well (Fig. 3b)
with the analytical solution given by Eq. (18). The
errors in the model predicted velocities are less
than 7%.

7. Application of the model to study the circulation in

Narragansett Bay

Narragansett Bay (Fig. 4) is composed of four
major passages, West Passage, East Passage, Provi-
dence River and Sakkonet River and has a mean
depth of 9m. The tidal wave enters Narragansett
Bay from Rhode Island Sound through the East and
West Passages and the Sakkonet River. The tide is
predominantly semi-diurnal with standing wave
Fig. 8. Comparison of power spectra of model predictions to o

November–December 2002.
characteristics. Haight (1936) found that the inter-
actions between M4, M6 and M2 tides result in
double peaked flood currents profiles commonly
seen in Narragansett Bay. A detailed description
about the tidal hydrodynamics within Narragansett
Bay can be found in Haight (1936) and Ward and
Spaulding (2001). A detailed account of the non-
tidal circulation in Narragansett Bay is given in
Weisberg and Sturges (1976).

Many circulation models have been applied to
Narragansett Bay, however most focused primarily
on tide and wind driven flows and neglected the
effects of density driven flows. For example,
Gordon and Spaulding (1987) investigated the tidal
and wind-driven circulation in Narragansett Bay
using a three-dimensional rectangular coordinate
hydrodynamic model. Muin and Spaulding (1997b)
applied a three-dimensional boundary-fitted hydro-
dynamic model to study the circulation in Provi-
dence River. Ward and Spaulding (2001) calibrated
and validated a two-dimensional vertically averaged
hydrodynamic model that served as a core of a
nowcast/forecast system of circulation dynamics for
Narragansett Bay. Ward (1999) developed a depth
averaged finite volume shallow water model using
bservations for surface elevation at Conimicut Point during
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triangular elements and applied it to study the
circulation in Narragansett Bay.

The three-dimensional hydrodynamic model de-
veloped in the present study, taking density driven
flows into account, is applied to model circulation
and transport within Narragansett Bay. A detailed
skill assessment of the model is performed, by
comparing the model-predicted surface elevations,
Fig. 9. Comparison of the observed and model-predicted current speeds

(a) Near surface (8m) from bottom. (b) Near mid-depth (5m from bo
currents, salinities, and temperatures, with observa-
tions.

7.1. Model grid

The model study area and its bathymetry is
shown in Fig. 4. The grid of the model study area
(Fig. 5), consists of 95� 210 segments with 4585
at a ADCP station in the Quonset Channel 1–16 December 2002.

ttom). (c) near bottom (2m from bottom).
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cells. A set of Poisson partial differential equations
with Dirichlet boundary conditions (Thompson
et al., 1985) is employed to generate the boundary
fitted grid. Grid non-orthogonality was significantly
reduced by judiciously moving the boundary points
and by the use of interior control points. Table 1
gives a summary of the skewness of the grid cell
corners for the boundary-fitted grid shown in Fig. 5.
A grid angle of 901 represents an orthogonal grid. It
is seen that 90% of the grid cell corners have grid
angles greater than 701. Eleven sigma layers of equal
thickness are used in the vertical. Bathymetric
soundings with associated latitude and longitude
for the area were accessed from National Geophy-
Fig. 10. Comparison of power spectra of observations and m

Table 3

Statistical evaluation of model performance at the Quonset ADCP sta

Depth from bottom (m) RMS error (m/s) Data rang

3 0.057 0.444

4 0.047 0.414

5 0.040 0.431

6 0.038 0.449

7 0.043 0.476

8 0.062 0.582

Table 4

Properties of observed M2 and M4 current harmonics

M2 amplitude (m/s) M4 amplitude (m/s) Ratio of amplitudes M

2 6.6 2.5 0.379

5 13 4 0.308

8 16.7 4.1 0.246
sical Data Center NGDC (1996) and the bathyme-
try was then mapped onto the computational grid.

7.2. Model boundary conditions

The tide height or free surface elevation recorded
at 6min intervals by National Ocean Survey (NOS)
tide gauge station at Newport, RI was obtained and
filtered using a 3-h low pass filter and were used
along the three ocean open boundaries at the
southern end of the study area. No significant
changes in amplitude or phase occur across these
three boundaries. Surface water temperatures mea-
sured at Newport by NOS were forced along the
odel predictions at mid-depth at ASA ADCP station.

tion in the Quonset Channel

e (m/s) RMS error (%) Correlation coefficient

12.9 0.860

11.3 0.910

9.3 0.940

8.4 0.954

9.0 0.951

10.7 0.917

4/M2 Phase of M2 fM2
(1) Phase of M4 fM4

(1) 2fM2
� fM4

144.2 9.8 278.6

129.3 46.3 212.3

136.3 58.5 214.1
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Fig. 11. (a) Comparison of observed and predicted 32-h low-passed u and v velocities near bottom (3m from the bottom). (b) Comparison

of observed and predicted 32-h low-passed u and v velocities near mid-depth (6m from the bottom). (c) Comparison of observed and

predicted 32-h low-passed u and v velocities near bottom (2m from the surface).
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Fig. 11. (Continued)
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open ocean boundary, while the salinity along the
open boundary was held constant at 33 psu. Winds,
solar radiation, atmospheric pressure, air tempera-
ture, dewpoint, and relative humidity, recorded at
Green Airport in Warwick, RI were obtained from
Northeast Regional Climate Center at Cornell
University and used as the forcing at the air–sea
interface. Fig. 6(a) shows a stick plot of the observed
wind records at Providence Airport, during Nov–-
Dec 2002. A quadratic wind stress coefficient of
0.0014 was used to calculate the wind stress, which
was then applied uniformly over the whole study
area. The total freshwater water flow into the Upper
Narragansett and Mount Hope Bays were obtained
from the United States Geological Survey gauging
stations and used as the river forcing, after being
scaled according to Ries (1990). Fig. 6(b) shows a
time series plot of the total fresh water flow into the
Bay during Nov–Dec 2002. A constant quadratic
bottom friction coefficient of 0.003 was used in the
model after preliminary testing.

8. Skill assessment of model predictions

A statistical evaluation of the model-predicted
surface elevations, currents, salinity and tempera-
ture in Narragansett Bay, is done by comparing it
with observations.

8.1. Surface elevations

The model-predicted surface elevations for a
29-day period compare well with the observations
from NOS stations located at Quonset and Conimi-
cut Point as shown in Figs. 7(a) and 7(b). The
observed spring–neap tidal cycles and low-fre-
quency fluctuations in the surface elevation are well
reproduced by the model.

A statistical evaluation of the model performance
is given in Table 2. The predicted surface elevations
show excellent comparison with observations
with a root mean square error of less than
3% and correlation coefficients higher than of
0.997. It is seen from Fig. 8 that the model clearly
reproduces the spectral energy distributions seen
in the observations at the tidal and sub-tidal
frequencies.

8.2. Currents

The model-predicted current speeds at surface,
mid-depth, and bottom show very good agreement
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with the observations at the Acoustic Doppler
Current Profilers (ADCP) station as shown in
Fig. 9. The model clearly reproduces the spring
and neap cycles, the shorter duration but stronger
ebb dominant currents, and the double flood
phenomena seen in the observations. Friedrichs
and Aubrey (1988) showed that when M4 is locked
in a velocity phase of 90–2701, with respect to M2,
the distorted composite tide has higher ebb current
and larger the M4/M2 amplitude ratio, the more
ebb-dominant is the tidal current. The observed M2

and M4 tidal current harmonic characteristics at
surface and mid-depth, given in Table 4, clearly
explain the ebb dominance seen in observed tidal
currents (Figs. 9(i) and (ii)) at Quonset.
Fig. 12. Wind-driven residual circulation, averaged over 60 days at the

only. The current vectors are plotted at every other cell.
A statistical evaluation of the model-predicted
three-dimensional current speeds at the ADCP
station is given in Table 3. The root mean square
(RMS) errors of the model predictions are less than
13% of the maximum speeds and correlation
coefficients exceed 0.860. The current power spectra
for the observations and model predictions at mid-
depth at the ADCP location is shown in Fig. 10. It is
seen that the model predictions clearly reproduce
the energy spectral levels seen in the observations,
particularly for the M2 and M4 periods (Table 4).
However, the model does not reproduce the low-
frequency currents very well (Fig. 10), even though
it reproduces the low-frequency surface elevations
very well (Fig. 8). This can be attributed to the fact
bottom (1m from the bottom), with model forcing due to winds
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Fig. 13. Comparison of observed and predicted mean currents
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Fig. 14. (a) Residual circulation, averaged over 60 days at the bottom

other cell. (b) Residual circulation, averaged over 60 days at the surface

other cell.
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that the only surface elevations are forced along the
open boundaries and the circulation due to non-
local forcing from the offshore is not taken into
account. The observed and predicted 32-h low-
passed currents at the bottom (Fig. 11a), mid-depth
(Fig. 11b), and surface (Fig. 11c) compares well for
the most-part.

8.3. Residual currents

Residual currents could be generated due to non-
linearity in the dynamics of tidal flow (Signell
and Geyer, 1991), local wind stress on the surface
(Rady et al., 1998), and longitudinal density
gradient (Weisberg and Sturges, 1976). The magni-
tudes of the residual current speeds are usually
smaller than the tide and wind-induced currents.
(1m from the bottom). The current vectors are plotted at every

(0.5m from the surface). The current vectors are plotted at every
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Fig. 14. (Continued)
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The model-predicted residual currents presented in
this study were obtained by taking a time-average of
the model-predicted instantaneous currents, over at
least 1-month period.

Residual mean currents presented in this study
were obtained by time-averaging the model-pre-
dicted and observed currents over the 60-day period
(November–December 2001). The model predicted
tide induced residual currents in the Bay were seen
to be very small, with maximum tide-induced
residual currents of 1 cm/s in the Sakknonet
passage. The model predicted depth-averaged
wind-induced residual currents vary between 1 and
10 cm/s (Fig. 12) with maximum currents of 10 cm/s
in the Sakonnet River. Fig. 13 shows a comparison
of the observed and predicted mean currents along
the vertical. Figs. 14 (a) and (b) show the total
residual mean currents in the surface and bottom,
respectively. It is seen that the model clearly
reproduces the estuarine flow, with a landward flow
(Fig. 14a) at the bottom and a seaward flow at the
surface (Fig. 14b). It is to be noted that the residual
currents due to winds dominates over the estuarine
flow in the Sakonnet River (Fig. 14(a)).

8.4. Salinity and temperature

The model predicted salinities were found to be
insensitive to variations in the horizontal dispersion
coefficient and was kept at 100 cm2/s. The vertical
diffusion coefficient was varied from 6 to 20 cm2/s
and the best match between the observed and
predicted salinities was obtained using a value of
10 cm2/s.
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Fig. 15 shows the comparison of the observed and
model-predicted salinities at the surface, mid-depth
and bottom at Quonset. The model clearly repro-
duces the non-tidal salinity variations at the bottom
and mid-depth, but somewhat over estimates them
at the surface. The tidal variation of the salinity is
often overestimated. A statistical evaluation of the
model-predicted salinities is given in Table 5. The
error in the time-averaged mean salinity between the
model predictions and observations is 0.1 psu at the
bottom and mid-depth, and 0.7 psu at the surface.
Fig. 15. Comparison of observed and predicted salinit

Table 5

Statistical evaluation of the observed and predicted salinities_Toc63487

Instrument depth RMS error (psu) Time averag

Observed (p

Near bottom 0.453 29.917

Mid-depth 0.537 30.568

Near surface 0.559 30.525
Fig. 16 shows a comparison of the observed and
model predicted temperatures at Quonset. The
model clearly reproduces the non-tidal variations
of temperatures seen in the observations. A
statistical evaluation of the model predicted tem-
perature is given in Table 6.

9. Summary and conclusions

A three-dimensional, orthogonal coordinate
semi-implicit hydrodynamic model in spherical
ies at surface, mid-depth and bottom at Quonset.

026 at Quonset station

ed mean salinities Correlation coefficient

su) Model (psu)

30.121 0.998

30.194 0.990

30.235 0.950
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Fig. 16. Comparison of observed and predicted temperatures at surface, mid-depth and bottom at Quonset.

Table 6

Statistical evaluation of the observed and predicted temperatures at Quonset station

Instrument depth RMS error (1C) Time averaged mean temperatures Correlation coefficient

Observed (1C) Model (1C)

Near bottom 0.846 7.493 8.229 0.988

Mid-depth 0.622 7.822 8.282 0.990

Near surface 0.966 8.785 8.300 0.950
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coordinates that can be applied to estuarine, coastal
sea and continental shelf waters is presented. A
generalized orthogonal coordinate transformation
on the horizontal and a sigma coordinate transfor-
mation on the vertical, are applied to the governing
equations. The governing equations are decom-
posed into exterior and interior modes and solved
using a semi-implicit solution technique. Second-
order accurate spatial and temporal discretization
schemes are used on a space-staggered grid. A
simple flooding and drying technique is used to
model the tidal flats.

The model results are tested against analytical
solutions for tidal circulation in an annular channel
and steady residual flow generated by wind, and
density differences in a rectangular channel. The
predictions from the model showed very good
comparison with analytical solutions for all the test
cases.

Three-dimensional circulation in Narragansett Bay
was then studied using the developed model. The
model forcing functions consist of meterological data,
water elevation, salinity, and temperature along the
open boundary, and freshwater inflows from two
major rivers. The model predicted surface elevations,
three-dimensional instantaneous and mean currents,
salinities, and temperatures in Narragansett Bay are
compared with the observations. Mean errors in the
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model predicted surface elevations and velocities are
less than 3% and 15%, respectively. The model
clearly reproduces the spring and neap cycles, the
shorter duration but stronger ebb dominant currents
and the double flood phenomena seen in the
observations. Correlation coefficients for salinity
and temperatures exceed 0.95 and 0.87, respectively.
The mean estuarine currents, and the sub-tidal
currents seen in the observations are clearly repro-
duced by the model.

The skill assessment of the model clearly showed
the capability of the model to predict the surface
elevation, currents, salinities and temperature at
tidal and sub-tidal frequencies.

We plan to incorporate the eta-coordinate system
(Luo et al., 2002) that can be applied to problems
with steep bottom slopes, and a turbulence closure
scheme (Mellor and Yamada, 1974) that can be
applied to highly stratified systems in the model
presented in this study.

Acknowledgement

We acknowledge and greatly appreciate the
reviewers’ comments, which helped to significantly
improve and strengthen this manuscript.

Appendix A

A.1. Symbols

U, V vertically averaged velocities
x, Z general orthogonal coordinate system
z surface elevation
r0 mean water density of water
ra density of air
f coriolis parameter ¼ 2O sinf
O angular velocity of earth
S salinity
T temperature
Dh, Dv horizontal and vertical diffusivities
Av vertical eddy viscosity
D total water depth (h+z)
g acceleration due to gravity
R radius of the earth.
s sigma coordinate system s ¼

z� z
H þ z

� �
f, y longitude, latitude
C concentration (salt or temperature)
Jp Bessel functions of the first kind of order p;
Yp Bessel functions of the second kind of order

p;
i

ffiffiffiffiffiffiffi
�1
p

o angular frequency
t linear bottom friction coefficient.
u0, v0 deviations of the three-dimensional veloci-

ties in f and y directions
o velocities normal to the sigma level

g11 ¼
qf
qx

� �2

cos2 yþ
qy
qx

� �2

,

g22 ¼
qf
qZ

� �2

cos2yþ
qy
qZ

� �2

.

Appendix B

B.1. Derivation of scale factors in spherical

coordinate system

The position vector on the surface of the sphere
(f,y, R ¼ constant) is given by

r̂ ¼ ðR cos yÞfêf þ Ryêy, (B.1)

where f is the longitude, y is the latitude R is the
radius of the earth and êf and êyare the curvilinear
unit vectors in f and y directions, respectively.

The derivatives of the position vectors in the (x,Z)
directions are given by

ĝ1 ¼
qr̂

qx
¼ R cos yfxi þ Ryxj, (B.2)

ĝ2 ¼
qr̂

qZ
¼ R cos yfZi þ RyZj, (B.3)

where i and j are the unit vectors x, Z directions
and the subscripts in the equations indicate partial
derivatives fx ¼

qf
qx

� 	
.

Normalizing with respect to R, since R is constant
on the surface of the sphere, the covariant
components of the metric tensor gij ¼ ĝi � ĝj are
given by,

g11 ¼ fxfx cos
2 yþ yxyx,

g12 ¼ g21fxfZ cos
2 yþ yxyZ,

g22 ¼ fZfZ cos
2 yþ yZyZ. ðB:4Þ
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