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SUMMARY

In the present investigation, a Fourier analysis is used to study the phase and group speeds of a
linearized, two-dimensional shallow water equations, in a non-orthogonal boundary-�tted co-ordinate
system. The phase and group speeds for the spatially discretized equations, using the second-order
scheme in an Arakawa C grid, are calculated for grids with varying degrees of non-orthogonality
and compared with those obtained from the continuous case. The spatially discrete system is seen to
be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non-
orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached
by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184:299–320). The stability condition
for the non-orthogonal case is satis�ed even when the grid non-orthogonality angle, is as low as 30◦
for the Crank Nicolson and three-time level schemes. A two-dimensional wave deformation analysis,
based on complex propagation factor developed by Leendertse (Report RM-5294-PR, The Rand Corp.,
Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two-time level
Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase
error is found to increase, as the grid angle decreases for a constant Courant number, and increases as
Courant number increases. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: stability; dispersion; boundary-�tted grids; compact di�erence; non-orthogonality

1. INTRODUCTION

Sankaranarayanan and Spaulding [1] analysed the accuracy of the �nite di�erence approxima-
tions of the linearized shallow water equations in a non-orthogonal boundary-�tted co-ordinate
system (BFC) using a truncation error analysis. Expressing the co-ordinate metrics in BFC,
in terms of the grid quality parameters, such as aspect ratio and grid non-orthogonality, they
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showed that the coe�cient of the truncation error terms is dependent on the grid angle and
the aspect ratio. However it is di�cult to give an estimate of the truncation error, since the
higher order derivatives in the truncation error terms, in a non-orthogonal BFC system become
very cumbersome for numerical evaluation. They also found that the error in model predicted
currents were found to increase with the decrease in grid angle or grid resolution.
The dispersion and stability analyses for the various schemes used in solving shallow wa-

ter equations have been carried out in the past using a Fourier analysis of the di�erencing
techniques, solving the governing equations in a Cartesian co-ordinate system [2]. Foreman
[3] determined the accuracy of some �nite di�erence and �nite element techniques, by com-
paring the numerical and analytical plane wave solutions using Fourier analysis. Song and
Tang [4] analysed the dispersion and group velocity for linearized, three-dimensional shallow
water equations, discretized using a hybrid scheme based on Arakawa’s B and C spatial grid
types. Leendertse [5] used a complex propagation factor to compare the amplitude and phase
components of the Fourier series representing the computed wave calculated from the fully
discretized equations with that of the real wave.
The accuracy of a given �nite di�erence scheme is evaluated by using a Fourier analysis of

the semi-discrete and continuous systems. The stability and dispersion analyses usually require
linearized equations with constant depth on a regular grid. Since the present study involves
an analysis of the linearized shallow water equations in a non-orthogonal BFC system, the
numerical and analytical plane wave solution of the system is performed in the transformed
plane. The co-ordinate metrics such g(11); g(12); g(22) and the Jacobian J that appear in these
solutions are approximated using centered �nite di�erence approximations. The amplitude
and phase errors of the fully discretized equations are also computed using the complex
propagation factor [5], for the schemes used in this study.

2. GOVERNING EQUATIONS

Using a spherical co-ordinate system, where � is the longitude, � is the latitude, R is the
mean radius of the earth, the two-dimensional vertically averaged continuity equation is given
by [6]

@�
@t
+

1
R cos �

@UD
@�

+
1
R
@VD
@�

− VD
R
tan �=0 (1)

where U and V are the vertically averaged velocities in the � and � directions, � is the water
surface elevation, D is total depth (�+h), and h is the water depth. Neglecting the advective,
viscous, and Coriolis terms, the momentum equation in the �-direction is given by
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Similarly, the momentum equation in the �-direction is given by
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Coriolis e�ects have been neglected and hence our analysis will be applicable to problems
where Rossby (V=(�L)) number is less than 1, where V is the velocity of �ows, � is the
angular velocity of the earth and L is the length scale of motion [7].

2.1. Governing equations in the BFC system

The linearized transformed equations of motion, in terms of the contravariant velocities
(U c and V c) in the curvilinear co-ordinate system (�; �) are given by
Continuity equation

@�
@t
+
(
√
GU cD)� + (

√
GV cD)�

R
√
G

=0 (4)

Momentum equation in �-direction

@(DU c)
@t

+
gD(g(11)�� + g(12)��)

R
=0 (5)

Momentum equation in �-direction

@(DV c)
@t

+
gD(g(21)�� + g(22)��)

R
=0 (6)

g(ij) is the inverse metric tensor given by

g(ij) =
1
G

(
���� cos2 �+ ���� −(���� cos2 �+ ����)

−(���� cos2 �+ ����) ���� cos2 �+ ����

)
(7)

where G is the determinant of the metric tensor gij

G= J 2 cos2 � (8)

and J is the Jacobian of the transformation given by

J =���� − ���� (9)

g(ij) is the metric tensor and is given by

g(ij) =

(
���� cos2 �+ ���� ���� cos2 �+ ����

���� cos2 �+ ���� ���� cos2 �+ ����

)
(10)

and the subscripted variables (��; ��; �� and ��) refer to the derivatives with respect to the
subscripts indicated.

3. DISPERSION ANALYSIS

Taking the case of a constant total depth, ‘D’ and assuming the grid to be uniform, the
following change of variables is performed, so that the governing equations are amenable
to Fourier analysis:

√
GU c = Û ;

√
GV c = V̂ ; Ẑ = �

√
g=D; c=

√
gD. The governing equations

then become,
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Continuity equation

@Ẑ
@t
+
cÛ� + cV̂�
R
√
G

=0 (11)

Momentum equation in �-direction

@Û
@t
+
c
√
G(g(11)Ẑ� + g(12)Ẑ�)

R
=0 (12)

Momentum equation in �-direction

@V̂
@t
+
c
√
G(g(12)Ẑ� + g(22)Ẑ�)

R
=0 (13)

where the subscripted variables (Û�; V̂�; Ẑ� and Ẑ�) refer to the partial derivatives with respect
to the subscripts indicated.

3.1. Dispersion analysis of the continuous BFC system

A continuous Fourier mode is introduced in each �eld variable such that,

Û=U0ei[k��+k��−!t]

V̂ =V0ei[k��+k��−!t]

Ẑ=Z0ei[k��+k��−!t]

(14)

Equations (11) through (13) reduce to,
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Z0


 =0 (15)

where k� and k� are the wave numbers in the � and � directions, respectively.
A non-trivial solution of Equation (15) requires that

iR2!3 + ic2(−2k�g(12)k� − k2�g(22) − k2�g(11))!=0 (16)

Solution of Equation (16) gives three frequencies.

!=
{
0;
c
√
s3
R
;−c

√
s3
R

}
(17)

where s3 = 2 g(12)k�k� + g(22)k2� + g
(11)k2� .

The �rst of the waves given by Equation (17) represents a steady-state �ow �eld, while
the other two represent, progressive and retrogressive waves, respectively. The corresponding
frequencies in the continuous system in Cartesian co-ordinates, can be obtained by substituting
the following equations in Equation (17):

k2� =(kx dx)
2; k2� =(ky dx)

2; R=1; g(11) = 1; g(12) = 0; g(22) = 1 (18)
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The group velocity CG�, corresponding to the values of ! in Equation (17) is given by

CG�=
d!
dk�

=
{
0;
c(k�g(12) + k�g(11))

R
√
s3

;−c(k�g
(12) + k�g(11))
R
√
s3

}
(19)

The corresponding expression for group speed in the continuous system for Cartesian
co-ordinates can be obtained by substituting Equation (18) into Equation (19).

3.2. Dispersion analysis of the spatially discrete BFC system

In the present study, the second-order spatial discretization on an Arakawa C grid [2], used
in Muin and Spaulding [6] has been selected, for analysing the dispersion of the di�erence
scheme in a BFC system.
The spatially discretized equations, on an Arakawa-C grid are given by

Continuity equation(
dẐ
dt

)
j;m

+ c
(Û

n+1
j+1=2; m − Û n+1

j−1=2; m)

R
√
G d�

+ c
(V̂

n+1
j;m+1=2 − V̂

n+1
j;m−1=2)

R
√
G d�

=0 (20)

�-momentum equation

(
dÛ
dt

)
j;m

+
c
√
Gg(11)(Ẑj+1; m − Ẑj;m)n+1

R d�

+
c
√
Gg(12)(Ẑj+1; m+1 + Ẑj;m+1 − Ẑj+1; m−1 − Ẑj;m−1)n+1

4R d�
=0 (21)

�-momentum equation

(
dV̂
dt

)
j;m

+
c
√
Gg(22)(Ẑj;m+1 − Ẑj;m)n+1

R d�

+
c
√
Gg(12)(Ẑj+1; m+1 + Ẑj+1; m − Ẑj−1; m+1 − Ẑj−1; m)n+1

4R d�
=0 (22)

It should be noted that the third term in Equations (21) and (22), which use a non-compact
stencil is due to the non-orthogonality of the grid. Sankaranarayanan and Spaulding [1] have
shown through a truncation error analysis that the error in this term increases as the grid
angle decreases from 90◦.
A spatially discrete Fourier mode is introduced for each �eld variable such that:

Ûj;m=U0ei[ jk� d�+mk� d�−!t]

V̂j;m=V0ei[ jk� d�+mk� d�−!t]

Ẑj;m=Z0ei[ jk� d�+mk� d�−!t]

(23)
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Assuming d�=d�, Equations (20) through (22) reduce to,


− i!√
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�cp2
2 i c sin(k�=2)√
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where

p1=
2 g(11) sin(k�=2) + g(12) sin k� cos(k�=2)

R d�

p2=
g(21) cos(k�=2) sin k� + 2 g(22) sin(k�=2)

R d�

(25)

Assuming d�=d�, a non-trivial solution of Equation (24) requires that

iR2 (d�)2!3 −
(
2 ig(12)c2 sin k� sin k� − 4ig(11)c2 sin2 k�2

− 4ig(22)c2 sin2 k�
2

)
!=0 (26)

It is noted that d�=d�=1 in the transformed plane.
Solution of Equation (26) gives three frequencies:

!=

{
0;±

√
2c
√
2p+ 2q+ s
R d�

}
(27)

where

p= g(11) sin2
k�
2
; q= g(22) sin2

k�
2
; s= g(12) sin k� sin k� (28)

The group velocity CG�, corresponding to the values of ! in Equation (27), is given by,

CG�=
d!
dk�

=

{
0;± cs1

R
√
2(2p+ 2q+ s)

}
(29)

where s1 = g(11) sin (k�) + g(12) sin (k�) cos (k�) substituting d�=dx and using Equation (18)
the expressions for frequency and group speeds, for the three-point, second-order spatial dis-
cretization in Cartesian co-ordinates can be obtained.

4. STABILITY ANALYSIS

A stability analysis of the Equations (20) through (22) is performed by using the classical
von Neumann method, under the assumption that the governing equations are de�ned on an
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in�nite spatial domain, or with periodic boundary conditions on a �nite domain. Applying a
generalized second-order scheme in space and time to Equations (20) through (22) gives,
Continuity equation

(1 + �)Ẑn+1j;m − (2�+ 1)Ẑnj;m + �Ẑn−1j;m

dt
+ (1− �)c (Û

n+1
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j−1=2; m)

R
√
G d�

+ �c
(Û n
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R
√
G d�
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n+1
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R
√
G d�
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(V̂ nj;m+1=2 − V̂ nj;m−1=2)

R
√
G d�

=0 (30)

�-momentum equation
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+
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+
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√
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R d�

+
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+
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√
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�-momentum equation
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j;m+1=2 − (2�+ 1)Û n

j;m+1=2 + �Û
n−1
j;m+1=2

dt

+
c(1− �)√Gg(22)(Ẑj;m+1 − Ẑj;m)n+1

R d�
+
c �

√
Gg(22)(Ẑj;m+1 − Ẑj;m)n

R d�

+
c(1− �)√Gg(12)(Ẑj+1; m+1 + Ẑj+1; m − Ẑj−1; m+1 − Ẑj−1; m)n+1
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4R d�
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where � and � are the weighting factors for the second-order scheme.
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After introducing the spatially and temporally discrete Fourier modes for all the variables
as follows:

Û n
j;m=U0e

i[ jk� d�+mk� d�−n ! dt]

V̂ nj;m=V0e
i[ jk� d�+mk� d�−n ! dt]

Ẑnj;m=Z0e
i[ jk� d�+mk� d�−n! dt]

(33)

The fully discretized equations reduce to


(1+�)�2−(2�+1)�+�
dt J 0 cip1[�2(1− �) + � �]
0 (1+�)�2−(2�+1)�+�

dt J cip2[�2(1− �) + ��]
2ic sin(k�=2)[�

2(1−�)+� �]
d�J R

2ic sin(k�=2)[�2(1−�)+� �]
d�J R

(1+�)�2−(2�+1)�+�
dt J





U0

V0

Z0


 =0 (34)

where �=e(± i! dt) and represents the change in amplitude and phase over a time interval dt.
Assuming d�=d�, a non-trivial solution of Equation (34) requires that

(�4(−8 �p13 + 4 �2p13 + R2�2 + 4p13 + R2 + 2R2�)
+ �3(8�p13 − 8�2p13 − 4R2 �2 − 2R2 − 6R2�)
+ �2(6R2�2 + 4�2p13 + R2 + 6R2�)

+ �(−2R2� − 4R2�2) + R2�2)(�2 + �2� − 2�� − �+ �)=0 (35)

where, p13 = (p+q+s=2) c20; p= g
(11) sin2(k�=2); q= g(22) sin

2(k�=2) and s= g(12) sin k� sin k�.
The three-time level temporal scheme given in Reference [6] for two dimensions can be

obtained by substituting �=1=2 and �=0 in Equation (35). Thus for the three-time level
scheme, Equation (35) reduces to,

(�− 1)(3�− 1)(a1�4 − 24R2�3 + 22R2�2 − 8R2�+ 1)=0 (36)

where a1 = 16p13 + 9R2.
Solution of Equation (36) gives six eigenvalues

{�}=




6R2±a2
√
a4−a5−2Ra3
a1

6R2±a2
√
a4+a5+2a3
a1

1
1
3




(37)

where a2 = 4
√
1=9R2 − a1; a3 =

√
9R2 − a1; a4 = a3 (72R4−7a1R2); a5 = 216R5−33a1R3+a21R.

The eigenvalues for the same discretization in Cartesian co-ordinates, obtained by using the
substitutions given in Equation (18), are identical to that given in Reference [8]. It seems
very di�cult to derive a stability criterion, from the eigenvalues given in Equation (37), since
the characteristic equation for this scheme is a polynomial of sixth order. The eigenvalues
can, however, be numerically evaluated for a given dt, as discussed later.
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Table I. Table of grid parameters.

Angle (�) (deg) g(11) g(22) g(12) J AR

90 7:7648E− 09 7:7685E− 09 0 7:7666e− 09 1.0
60 8:5816E− 09 9:9139E− 09 −4:2908E− 09 9:2237E− 09 1.075
50 9:0392E− 09 1:2853E− 08 −6:7794E− 09 1:0779E− 08 1.192
30 1:0655E− 08 3:1743E− 08 −1:5983E− 08 1:8391E− 08 1.726

A two-time level, Crank–Nicolson scheme can be obtained by substituting �=0 and �=1=2
in Equations (30) through (32). The characteristic equation (Equation (35)) for Crank–
Nicolson scheme then becomes

(p13 + R2)�3 + (p13 − 3R2)�2 + (−p13 + 3R2)�

− (p13 + R2)=0 (38)

where p13 = c2dt2(p+ q+ s=2).
Solution of Equation (38) gives three eigenvalues

�=

{
1;
p213 − p13 + 2

√
−R2p13

R2 + p13
;
p213 − p13 − 2

√
−R2p13

R2 + p13

}
(39)

If p13¿0, Equation (39) can be written in the form

�=

{
1;
p213 − p13 + i2

√
R2p13

R2 + p13
;
p213 − p13 − i 2

√
R2p13

R2 + p13

}
(40)

|�|= {1; 1; 1} (41)

The eigenvalues for the same discretization in Cartesian co-ordinates can be obtained by using
the substitutions given in Equation (18), and is identical to that given in Reference [8], for the
Cartesian co-ordinates. The �rst of the eigenvalues given by �=1 is neutrally stable, while
the other eigenvalues are found to be neutrally stable only when M¿0, then (p+ q)¿− s=2.
The stability requirement in the transformed co-ordinates, for the Crank–Nicolson scheme

is given by

g(11) sin2
k�
2
+ g(22) sin2

k�
2
¿− g(12)

2
sin k� sin k� (42)

or written in terms of the metric tensor as

g(22) sin
2 k�
2
+ g(11) sin

2 k�
2
¿
g(12)
2

sin k� sin k� (43)

Since g12 = 0, for orthogonal grids, the scheme is unconditionally stable for orthogonal grids.
For the non-orthogonal grids used in this study (Table I), Equation (43) was also satis�ed.
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5. TWO-DIMENSIONAL WAVE DEFORMATION ANALYSIS

The amplitude and phase components of the Fourier series representing the computed wave
are compared with the real solution using the complex Propagation factor [5]. The complex
propagation factor gives the relation between the computed and real waves, in terms of their
amplitudes and phases after a certain time interval, thus providing an estimate of the accuracy
of the numerical scheme.
The change in amplitude and phase lag of wave from its original value, as time advances

from t to t + dt is given by its eigenvalue (�). The eigenvalue of the analytical wave is
given by

�=e(± i! dt) (44)

Taking the analytical frequency of the two-dimensional system from Equation (17), the eigen-
value of the analytical solution is given by

�=e
±
(
i dt c

√
s3

R

)
(45)

The propagation factor, T (k�; k�) is de�ned as the complex ratio of the computed wave in
amplitude and phase to the physical wave after a time interval in which the physical wave
propagates over one wavelength. The modulus of the propagation factor is a measure of the
dissipation of the computed wave. The argument of the propagation factor gives a measure of
the dispersion or phase lag of the computed wave, relative to the real wave. The propagation
factor thus can be expressed as

T (k�; k�)=
ei(!

′t+keq)

ei(! t+keq)
(46)

where keq =
√
k2� + k2� ; t=2	=! and ! and !′ are the frequencies of the analytical and the

numerical waves, respectively.
Equation (46) can also be written as

T (k�; k�)= e2 	 i(!
′=!−1) (47)

The phase lag of the propagation factor can be expressed as

arg(T (k�; k�))=2	
{
tan−1[Im(�)=Re(�)]

c
√
s3=R

− 1
}

(48)

The propagation of a physical wave having a frequency of ! over its wavelength L requires,

=2	=! dt=2	=! time steps, where ! is the frequency of the analytical solution given by
Equation (17).
The modulus of the propagation factor is given by

|T (k�; k�)|=
( |�num|
|�ana|

)

= |�num|
 (49)

since the modulus of the eigenvalue of the analytical solution is unity.
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6. NUMERICAL EVALUATION OF PHASE SPEED AND GROUP SPEED FOR
DIFFERENT GRID CONFIGURATIONS

The phase and group speed properties of di�erent BFC grids, each having a uniform grid
non-orthogonality angle (�), are numerically evaluated using the expressions developed in
Section 3.3. Four grids, with grid angles (�) of 90, 60, 50 and 30◦ were used for the analysis.
It is assumed that the grids are uniformly skewed and extend to in�nity. Table I gives the
values of the various grid quality parameters namely, the interior grid angle (�), the elements
of metric tensor (g(i; j)), the Jacobian (J ) and the aspect ratio (A) for the four grids. The angle
of grid non-orthogonality (�) or interior angle of the grid (Figure 1), as it is called from now
on, can be de�ned as

cos �=
g(12)√g(11)g(22) (50)

The aspect ratio (A), gives the degree of distortion of the grid and is de�ned as

A=
√
g(22)
g(11)

(51)

The expressions for phase and group speeds in the transformed plane for the continuous and
discrete cases given in Section 3.3 are used to evaluate the phase speed and group speed
properties of a boundary �tted grid, as a function of the grid non-orthogonality angle. It can
be seen from the expressions for phase and group speeds, in the continuous system, that they
are dependent on the grid con�guration, being used. In other words, the phase and group
speeds in the continuous system are di�erent for grids with di�erent interior grid angles.
The phase and group speeds are computed for wave numbers ranging from 0 to 	=2, which
corresponds to a number of grids per wavelength ranging from in�nity to 4 for orthogonal
grids.
The depth of water D is taken to be 10 m for calculating the wave celerity c. It is to

be noted that the phase and group speeds calculated in this study, do not have any physical
signi�cance, since these values are evaluated in the transformed plane. The normalized phase

θ

φ

ξ

γ

η

Figure 1. De�nition sketch.
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Figure 2. Contours of normalized phase speeds with �=90◦.

speed, de�ned as the ratio of the phase speed of the numerical wave to that of the analytical
wave is computed and it is used as one measure to estimate the accuracy of the solution.
The contours of normalized phase speed, as a function of the wave number in the � direction
(k�) and wave number in the � direction (k�) for grids with grid angles of 90, 60, 50 and
30◦, are, respectively, shown in Figures 2–5. Figures 2–5 clearly show that the error in phase
speed increases as the grid angle decreases from 90 to 30◦. The contours of normalized group
speed as function of wave numbers in the � and � directions (k� and k�) for grids with grid
angles of 90, 60, 50 and 30◦, are respectively shown in Figures 6–9. As in the case of phase
speeds, the error in group speed increases as the grid angle decreases from 90 to 30◦.
It is clearly seen that the error in the phase and group speeds between the analytical solution

and the spatially discrete system is less than 3% for wave numbers up to 0.4. However, the
error in the phase and group speeds between the analytical and numerical solutions at higher
wave numbers is found to increase as the interior angle of the grid decreases.

7. ANALYSIS OF NUMERICAL STABILITY AND EVALUATION OF
EIGENVALUES FOR DIFFERENT GRID CONFIGURATIONS

It is seen from a stability analysis of a three-time level scheme that it has six eigenmodes, all
of which are physical, out of which one is neutral with �=1, another one has a dampening
with a value of �=1=3. A numerical evaluation of rest of the modes clearly shows that they
are physical and dampening modes, with magnitudes less than 1.
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Figure 3. Contours of normalized phase speeds with �=60◦.
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Figure 4. Contours of normalized phase speeds with �=50◦.
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Figure 5. Contours of normalized phase speeds with �=30◦.
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Figure 6. Contours of normalized group speeds with �=90◦.
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Figure 7. Contours of normalized group speeds with �=60◦.

The modulus of eigenvalues is found to be less than 1 for all the eigenmodes, for the range
of wave numbers and Courant numbers studied, even for grids with a grid angle as low as
30◦ implying the unconditional stability characteristics of this scheme. The Courant number
is de�ned as (c�t)=(�x), where c is the wave celerity, D is the total water depth, �x is the
grid spacing and �t is the time step.
The analytical stability criteria for the Crank–Nicolson derived for a non-orthogonal bound-

ary �tted co-ordinate system is found to be satis�ed for all the grids used in this study. All
the three eigenmodes for this scheme are neutral, once the stability criteria is satis�ed. A
numerical calculation of the all eigenvalues con�rmed that the modulus of eigenvalues for the
Crank–Nicolson scheme is unity, irrespective of the grid angle and the Courant number. In
the case of neutral modes, the amplitude of the solution remains constant, just as that of the
true solution.

8. WAVE DEFORMATION ANALYSIS FOR DIFFERENT GRID CONFIGURATIONS

An evaluation of the numerical dispersion of the fully discretized equations was performed
using the complex propagation factor developed by Leendertse [5]. The eigenvalues of the two
numerical schemes calculated using the expressions developed in Section 3.4 are used to com-
pute the complex propagation factor T (k�k�), using the expressions developed in Section 3.5.
The complex propagation factor T (k�k�), is de�ned as the complex ratio of the eigenvalue
of the numerical scheme to that of the analytical wave, as the analytical wave propagates
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Figure 8. Contours of normalized group speeds with �=50◦.

over one wavelength. The modulus of the complex propagation factor gives a measure of the
numerical dissipation or amplitude error of the numerical scheme with respect to the analyti-
cal solution and its phase gives a measure of the numerical dispersion or phase error of the
numerical scheme with respect to the analytical solution.
The modulus of propagation factor for Crank–Nicolson scheme is unity, irrespective of

the grid angle and the Courant number, thus there is no dissipation of the amplitude of the
solution. The contours of phase lags of the propagation factor as a function of wave numbers
in the � and � directions (k� and k�) for a time step of 283:3 s, corresponding to a Courant
number of 5 for grids with grid angles of 90, 60, 50 and 30◦, respectively, are shown in
Figures 10–13. It is seen that phase lag of the propagation factor increases, as the grid angle
decreases from 90 to 30◦. The contours of phase lags of the propagation factor as a function
of wave numbers in the � and � directions (k� and k�) for a time step of 28:8s, corresponding
to a Courant number of 0.5 for grids with grid angles of 90, 60, 50 and 30◦, respectively,
are shown in Figures 14–17. It is seen that phase lag of the propagation factor increases, as
the grid angle decreases from 90 to 30◦.
It can be seen that the phase lag of the propagation factor increases as the Courant number

increases from 1 to 5 and as the grid angle decreases from 90 to 30◦. The error is signi�cant
for Courant numbers greater than 1 and grid angles less than 50◦. The Crank–Nicolson scheme
does not dissipate the amplitude of the solution, due to its unit modulus of the propagation
factor. The error in phase lag or numerical dispersion for the Crank–Nicolson scheme is very
low for Courant numbers less than 1, thus making it an ideal candidate for the numerical
solution of shallow water equations. Crank–Nicolson scheme has an added advantage that its
two eigenvalues have identical dissipative and dispersive characteristics.
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Figure 9. Contours of normalized group speeds with �=30◦.

Even though the Crank–Nicolson scheme is less dissipative and dispersive compared to the
three-time level scheme, comparison of the solutions obtained for the case of tidal forcing
in a rectangular channel, open at one end [1] indicate that both the schemes have the same
accuracy, for orthogonal and slightly non-orthogonal grids. However, oscillations are found
to develop with the Crank–Nicolson scheme for grids with grid angles below 50◦. These
oscillations remain, since there is no mechanism to dissipate them.

9. CONCLUSIONS

The dispersion and stability analyses for the linearized shallow water equations, in a non-
orthogonal boundary-�tted co-ordinate system, discretized using a second-order �nite di�er-
ences on an Arakawa-C grid, are carried out in the transformed domain. The phase speed
and group speeds for the discrete system, with di�erent grid con�gurations are compared with
those obtained for the continuous system.
The error in phase and group speeds between the analytical solution and the spatially

discrete system is negligible, even for grids with a grid angle as low as 30◦, for wave numbers
ranging from 0 to 	=2, which correspond to a grids per wavelength ranging from in�nity to 4.
However, the error in phase and group speeds between the analytical solution and the spatially
discrete system for higher wave numbers is found to increase, as the grid angle decreases
from 90 to 30◦. Thus, the spatially discrete system is seen to be slightly dispersive with the
degree of dispersivity increasing with an decrease in grid angle or grid resolution and these
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Figure 10. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=283:3 s for �=90◦.
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Figure 11. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=283:3 s for �=60◦.
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Figure 12. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=283:3 s for �=50◦.
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Figure 13. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=283:3 s for �=30◦.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:741–763



760 S. SANKARANARAYANAN AND M. L. SPAULDING

0
0.5

1
1.5

2

0

0.5

1

1.5

2
-3

-2.5

-2

-1.5

-1

-0.5

0

kη

kξ

P
ha

se
la

g 
of

 p
ro

pa
ga

tio
n 

fa
ct

or
 (

de
g)

Figure 14. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=28:3 s for �=90◦.
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Figure 15. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=28:3 s for �=60◦.
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Figure 16. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=28:3 s for �=50◦.

results are in agreement with the conclusions reached by Sankaranarayanan and Spaulding [1].
Sankaranarayanan and Spaulding [1] found through model testing with analytical solutions
that the error in the model predicted velocities increases, as the grid angle deviates from
orthogonality. They also established through truncation error analysis that the error increases,
as the grid angle deviates from orthogonality.
A Von-Neumann stability analysis of a three-time level scheme used by Muin and Spauld-

ing [6] shows that the scheme is stable even for highly non-orthogonal grids and at high
Courant numbers. The scheme has been found to possess six physical modes. The modulus
of eigenvalues for all the modes were found to be less than 1, indicating that the scheme is
unconditionally stable.
A Von-Neumann stability analysis of the two-time level Crank–Nicolson scheme shows it to

be unconditionally stable for the orthogonal grids and conditionally stable for non-orthogonal
grids. The stability criteria for the non-orthogonal BFC grids is found to be satis�ed for grids
with angle of non-orthogonality as low as 30◦. The scheme has three physical modes, which
are neutral, subject to the satisfaction of the stability criteria. The modulus of the eigenvalue
is found to be one for all wave numbers, irrespective of the grid angle and the value of the
Courant number.
The amplitude and phase errors of the fully discretized equations, using a two-time level

Crank–Nicolson scheme is calculated based on the complex propagation factor. The modulus
of the complex propagation factor at high Courant numbers is found to be unity even for grids
with a grid angle as low as 30◦. Thus, there is no dissipation of the amplitude of the solution
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Figure 17. Contours of phase lag of propagation factor for �1 in Crank–Nicolson
scheme with dt=28:3 s for �=30◦.

for the Crank–Nicolson scheme for grids with low grid angles and at high Courant numbers.
The phase lag of the propagation factor is found to increase as the grid angle decreases from
90 to 30◦. The phase lag of the propagation factor is also found to decrease as the Courant
number decreases from 5 to 0.5. The phase lag of the propagation factor for this scheme is
found to be less than 10◦ for Courant numbers less than 1, even for grids with grid angles as
low as 30◦. Two of the three modes in this scheme are found to possess identical dissipative
and dispersive characteristics.
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